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TL;DR

We address the problem of learning SDE from noisy observa-

tions and

derive an approximate (variational) inference algorithm

propose a novel parameterization of the approximate

distribution over paths using a sparse Markovian Gaussian

process

The approximation is efficient in storage and computation, al-

lowing the usage of well-established optimizing algorithms such

as natural gradient descent.

Background & Motivation

SDE

An observed dynamical system on a time interval [0, τ ] can be

modeled using an SDE [1]

dxt = fθ(xt, t) dt + L dβt ,
where fθ(xt, t) is the drift function, LL> = Σ is the

(time-invariant) diffusion coefficient, and dβt is the standard

Brownian motion.

We focus on systems where the diffusion term is constant, and

the state x is indirectly observed at n discrete time points ti via
an observation model providing the likelihood {p(yi |xi)}tni=t1.
Aim is to learn the θ parameter(s) of the drift fθ(xt, t) given
observations by maximizing the marginal likelihood pθ(yt1,...,tn).
Model has arbitrary likelihood and the drift of the SDE is

non-linear.

Inference with SDE priors

The process xt is continuous over time but not necessarily

Gaussian.

It defines a probability measure over paths xt
p(x(·) |y1...n) = 1

Z
×

∏
p(yi |xi)× p(x(·)),

where Z is the normalization constant.

Computing the posterior distribution over state paths and the

marginal likelihood is intractable, we thus resort to approximate

inference.
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Fig. 1: GPR posterior and approximated posterior mean and 95%

confidence interval of the proposed method along with the

simulated trajectory and the noisy observations.
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Fig. 2: The evolution of the drift of the sparse Markovian

Gaussian process over iterations along with the prior SDE and

the true SDE drift.

Variational Inference

VI turns an inference problem into an optimization problem with

the optimal approximate posterior as q∗ = arg minq∈QL(q), where
L(q) is the ELBO: L(q) = Eq log p(y |x)− DKL [q(x)‖p(x)]

Archambeau’s method

Markovian Gaussian process is used as Q,

q(x(·)) : dxt = fl(xt, t) + L dβt
where fl(xt, t) = −At xt + bt, and At, bt are functions of time [2].

Proposed Method

Conditioned Markovian GP as Q, by conditioning states of a sta-

tionary Markovian GP rφ to Gaussian variable with distribution wψ

q{φ, ψ} (x(·)) = rφ (x̄(·) |x(z)) wψ(x(z)) .
ELBO for the proposed model is

L =
n∑
i=0

Eq(x(ti))[l(xi)]+
∫ τ

t=0
Eq(xt) [g(xt)] dt−DKL [w(x(z))‖r(x(z))] ,

where g(xt) = −1
2 (fθ(xt)− fφ xt)>Σ−1 (fθ(xt)− fφ xt), and

l(xi) = log p(yi |xi), with the observations assumed i.i.d.

Inference and Learning

Two-step iterative algorithm, following the variational EM algo-

rithm [3].

Learning

Gradient descent to learn the θ parameters of the prior SDE,

Step 1.

Inference

Gradient descent for φ parameters of pseudo-prior r, Step 2.

Natural gradient descent for parameters ψ of the distribution

wψ, Step 3.

Algorithm 1: Optimization

η, ν, γ ← learning rates

while not converged do

θn+1← θn + ν∇θLsde ; // Step 1(Learn θ)
while not converged do

Hyperparameter gradient step:

φn+1← φn + η∇φL ; // Step 2(Learn r)
while not converged do

Natural gradient step:

λ̄n+1← γt∇µα+ (1− γt) λ̄n ; // Step 3(Learn w)
end

end

end

Natural gradient updates, following [4]

λt+1 = γt∇µα + (1− γt) λt ,

where α = ∫ τ
t=0

(
Eq(xt) [g(xt)] + ∑n

i=0 δ(t− tn)Eq(x(ti))[l(xi)]
)

dt,
and γt = 1

1+ρt with µ being the mean parameter, λ the natural

parameter of w, and δ is the dirac function.

Experiment with Ornstein–Uhlenbeck Process

We consider the OU process driven by SDE,

dx(t) = −ax(t) dt + σ dβ(t).

The proposed method is applied to approximate the posterior with

q(x(·)) = r(x(·) |x(z))w(x(z)) ,
where the kernel of r is the modified Matérn-1/2; whose diffusion

coefficient matches that of the prior SDE.
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Figure 2: Ornstein–Uhlenbeck process: Approximated posterior mean and 95% confidence interval
of the proposed method along with the simulated trajectory and the noisy observations.
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Figure 3: Ornstein–Uhlenbeck process: The evolution of the (a) Girsanov value; (b) Kullbeck–Liebler
divergence value; (c) Expected log-likelihood value; (d) Negative ELBO; over training iterations.

Fig. 3: Ornstein–Uhlenbeck process: The evolution of the

(a) Girsanov value; (b) Kullbeck–Liebler divergence value;

(c) Expected log-likelihood value; (d) Negative ELBO; over training

iterations.

Conclusion

The method can be summarized as performing GP regression with

a pseudo Markovian GP prior, while ensuring that the drift of this

pseudo prior matches that of the prior SDE.

Limitations & Extensions

Stationary GP has a linear drift and can not be expected to

approximate well a non-linear drift.

A natural extension is to use a piecewise stationary Markovian

GP whose drift coefficient is different in between each

consecutive pair of inducing points.

Alternatively, a mixture of Markovian GPs could be used which

would automatically cluster the state-space to provide a global

approximation to the prior drift.
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