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Sparse Gaussian Processes for
Stochastic Differential Equations

We address the problem of learning SDE from noisy observa-
fions and

= derive an approximate (variational) inference algorithm

= propose a novel parameterization of the approximate
distribution over paths using a sparse Markovian Gaussian
Drocess

The approximation is efficient in storage and computation, al-
lowing the usage of well-established optimizing algorithms such
as natural gradient descent.

Background & Motivation

SDE

= An observed dynamical system on a time interval |0, 7| can be
modeled using an SDE [1]

C-Xt — f@(Xt, t) dt + L dﬁt ]

where fy(xy, t) is the drift function, LL' = X is the
(time-invariant) diffusion coefficient, and dj, is the standard
Brownian motion.

= We focus on systems where the diffusion term Is constant, and
the state x is indirectly observed at n discrete time points ¢; via
an observation model providing the likelihood {p(y; | x;)}:"

i:tl'

= Aim is to learn the 6 parameter(s) of the drift fa(x, t) given
observations by maximizing the marginal likelihood py(yy,...+,)-

= Model has arbitrary likelihood and the drift of the SDE is
non-linear.

Inference with SDE priors

= The process x; is continuous over time but not necessarily
Gaussian.

= |t defines a probability measure over paths x;

1

p(x() [y1.n) = 7 < I1p(yi | xi) x p(x(-));

where Z Is the normalization constant.

= Computing the posterior distribution over state paths and the
marginal likelihood is intractable, we thus resort to approximate
Inference.
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Fig. 1: GPR posterior and approximated posterior mean and 5%
confidence interval of the proposed method along with the

simulated trajectory and the noisy observations.
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Fig. 2: The evolution of the drift of the sparse Markovian
Gaussian process over iterations along with the prior SDE and
the true SDE drift.

Variational Inference

Prakhar Verma

V| turns an inference problem into an optimization problem with
the optimal approximate posterior as ¢* = arg mingeq L(q), where
L(q) is the ELBO: L(q) = Eqlog p(y | x) — Dk, [¢(x)||p(x)]

Archambeau’s method

Markovian Gaussian process Is used as @),

q(x(+)) : dx; = fi(xq, t) + L dp,
where fi(x;, t) = —A;x; + b, and A,, by are functions of time [2].

Proposed Method

Conditioned Markovian GP as (), by conditioning states of a sta-
tionary Markovian GP r4 to Gaussian variable with distribution wy,

Q1,0 (X(+)) = 1o (X(-) | X(2)) wy(x(2)) .
ELBO for the proposed model is

£ = 3 By 106)]+ ] Byt la0)] dt =Dt [w(x(2)) (3¢(2))]

where  g(x;) = —5 (fo(x:) — fs xi) 7 (folxi) — foxt), and
l[(x;) = log p(y; | x;), with the observations assumed i.i.d.
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Inference and Learning
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Two-step iterative algorithm, following the variational EM algo-
rithm [3].

Learning

= Gradient descent to learn the 8 parameters of the prior SDE,
Step 1.

Inference
= Gradient descent for ¢ parameters of pseudo-prior r, Step 2.

= Natural gradient descent for parameters ¢ of the distribution
wy, Step 3.

Algorithm 1: Optimization

n, v, v < learning rates
while not converged do
9n+1 . Hn -V vﬁ Lsde :

while not converged do
Hyperparameter gradient step:

¢n+1 < ¢n T 77ng£ :
while not converged do
Natural gradient step:

A1 — iV a+ (1 —vy) X\, ;// Step 3(Learn w)
end

end

end

// Step 1(Learn 0)

// Step 2(Learn r)
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Fig. 3: Ornstein-Uhlenbeck process: The evolution of the
(a) Girsanov value; (b) Kullbeck-Liebler divergence value;
(c) Expected log-likelihood value; (d) Negative ELBO; over training
iterations.

Conclusion

= Natural gradient updates, following 4]
Air1 = VeV a+ (1 —5) A,

where a = [ (Eyx,) [90x0)] + i 0(t — 1) Eyxr [1(x0)]) dE.

and vy = 1+1pt with p being the mean parameter, A the natural

parameter of w, and ¢ Is the dirac function.

Experiment with Ornstein-Uhlenbeck Process

The method can be summarized as performing GP regression with
a pseudo Markovian GP prior, while ensuring that the drift of this
pseudo prior matches that of the prior SDE.

Limitations & Extensions

= Stationary GP has a linear drift and can not be expected to
approximate well a non-linear drift.

= A natural extension is to use a piecewise stationary Markovian
GP whose drift coefficient is different in between each
consecutive pair of inducing points.

= Alternatively, a mixture of Markovian GPs could be used which
would automatically cluster the state-space to provide a global
approximation to the prior drift.
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