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TL;DR

Simulation-based techniques for solving stochastic

differential equations (SDEs) are the de facto approach for

inference in the machine learning community

We advocate the use of alternative methods for solving

SDEs by approximating the typically intractable

Fokker–Planck–Kolmogorov equation

We revisit classical SDE theory and directly match the

moments of weak solutions, allowing us to forego sampling

in lieu of more scalable approaches

This workflow is fast, scales to high-dimensional latent

spaces, and is applicable to scarce-data applications

We demonstrate the methodology on general SDE problems

and GP-SDE models, where a GP encodes prior knowledge

into the SDE dynamics

Gaussian Process SDEs

We are concerned with continuous-time dynamical modelling

in machine learning, typically in the latent space of models

Consider an ODE model of some latent state z(t) defined as

d
dt

z(t) = vθ(z(t), t), (1)

where vθ(z(t), t) is a velocity field

Instead of a deterministic field, as introduced in [1], we set the

prior to be a Gaussian process

v(z, t) ∼ GP(µ(z), κ(z, z′)), (2)

where µ is the GP mean and κ the kernel.

Instead of the random ODE formulation defined by Eq. (1) and

(2), we write the model as an Itô SDE matching the GP

dz(t) = f(z, t) dt + L(z, t) dβ(t) . (3)

The GP-SDE above has its drift f(·, ·) set as the GP mean, and

diffusion L(·, ·) as a square-root factor of the Gaussian

covariance given by the GP model

Allows for encoding prior knowledge into the dynamics, such

as curl-freeness or divergence-freeness in vθ(z(t), t)
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Abstract

Simulation-based techniques such as variants of stochastic Runge–Kutta are the
de facto approach for inference with stochastic differential equations (SDEs) in
machine learning. These methods are general-purpose and used with parametric
and non-parametric models, and neural SDEs. Stochastic Runge–Kutta relies on
the use of sampling schemes that can be inefficient in high dimensions. We address
this issue by revisiting the classical SDE literature and derive direct approximations
to the (typically intractable) Fokker–Planck–Kolmogorov equation by matching
moments. We show how this workflow is fast, scales to high-dimensional latent
spaces, and is applicable to scarce-data applications, where a non-parametric SDE
with a driving Gaussian process velocity field specifies the model.

1 Introduction
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Figure 1: Views into solutions to SDEs.

Differential equations are the standard method of modelling
change over time. In deterministic systems the dynamics
specifying how the system evolves, are typically written
in the form of an ordinary differential equation (ODE).
The dynamics act as prior knowledge and often stem from
first-principles in application areas such as physics, control
engineering, chemistry, or compartmental models in epi-
demiology and pharmacokinetics. Recently, learning ODE
dynamics with modern automatic differentiation packages
in machine learning has awakened an interest in black-box
learning of continuous-time dynamics (e.g., [6, 37]) and
enabled their more general use across time-series modelling
applications.

A stochastic differential equation (SDE, [30, 40]) can be
seen as a generalization of ODEs to stochastic dynamical settings, where the driving forces fluctuate
or are uncertain. Stochastic dynamics appear naturally in applications where small (and typically
unobserved) forces interact with the process, such as tracking applications, molecule motion, gene
modelling, or stock markets. In machine learning, SDE models have received wide-spread attention
due to their robustness and appealing properties for uncertainty quantification.

The concept of a ‘solution’ to an SDE is broader than that of an ODE. As the process is stochastic,
the full solution entails a probability distribution, p(z, t), depending on time t and covering the space
z (see, e.g., [36]). For Itô type SDEs, the evolution of the probability mass can be described in
terms of the Fokker–Planck–Kolmogorov (FPK) partial differential equation (backward Kolmogorov
equation). This equation is typically intractable, and instead the de facto approach for inference in
SDEs in machine learning is sampling. The most common approaches in this space are based on
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Fig. 1: Views into solutions to SDEs: simulation-based solutions,

the FPK solution, and a Gaussian approximation for a GP-SDE

model conditioned on the arrow observations.

Matching Moments of the
Fokker–Planck–Kolmogorov (FPK) Equation

The FPK PDE gives the weak evolution of the SDE (3),

describing the development of the marginal density p(z, t):
∂p(z,t)

∂t = − ∑
i

∂
∂zi

[fi(z, t) p(z, t)]
+ 1

2
∑

i,j
∂2

∂zi ∂zj

{
[L(z, t) Q L>(z, t)]ij p(z, t)

}
.

The PDE is typically intractable, but assuming

p(z, t) ≈ N(m(t), P(t)) is Gaussian we write down the ODE

describing the evolution of the moments:

dm
dt =

∫
f(z, t) N(z | m, P) dz and

dP
dt =

∫
f(z, t) (z − m)> N(z | m, P) dz

+
∫

(z − m) f>(z, t) N(z | m, P) dz
+

∫
L(z, t) Q L>(z, t) N(z | m, P) dz

The integrals above are not tractable: further approximation is

required, such as linearization or Gaussian quadrature methods

such as the 3rd order cubature (see [2])

Reduced Computational Cost

One of the key advantages of weak solution concepts are lower

computational costs, especially in high-dimensional problems

Faithfully representing the underlying distribution through

sampling methods, such as Euler–Maruyama, often requires

multiple trajectories.

In contrast, a single step in the linearization moment ODEs can

be completed with O(1) evaluations of the drift, diffusion and

the Jacobian, and 3rd order cubature evaluates drift and

diffusion O(d) times

We empirically test the runtime of approximations: see plots

below for wall-clock timing results for a multi-dimensional

Beneš SDE, with a setting where the number of E-M

trajectories is selected to match the accuracy of the

approximations for comparability

The computational complexity of this approach is highly dependent on the choice of quadrature
method. A typical choice in ML applications would be Gauss–Hermite quadrature, which factorizes
over the input dimensions leading to an exponential number (pd) of function evaluations/sigma points
in the input dimensionality d for a desired order p. In order to guarantee scalability, we employ
a symmetric 3rd order cubature rule [3] which similarly to Gauss–Hermite (p = 3) is exact for
polynomials up to degree 3. The points are given by scaled unit coordinate vectors ei such that

ξi =

{ √
d ei, for i = 1, . . . , d,

−
√
d ei, for i = d+ 1, . . . , 2d,

(16)

and the associated weights are wi = 1
2d . This approach provides a direct way of propagating the

‘true’ moments of the latent SDE through an ODE for the mean and covariance and without the need
of drawing multiple sample trajectories. The resulting ODE is (d+ d2)-dimensional, and requires
only 2d evaluations of the drift and diffusion per step.

2.6 Analysis of the Computational Complexity
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Figure 5: Empirical timing experiments
with error of final margins matched.

In terms of the asymptotic computational complexity, the
linearization approach in Sec. 2.4 requires O(1) evalua-
tions of the drift, diffusion, and Jacobian per step. The
moment matching approach in Sec. 2.5 requires O(d)
evaluations of the drift and diffusion as well as an O(d3)
Cholesky decomposition per step. The simplest Monte
Carlo simulation method with p samples requires O(p)
evaluations of the drift and diffusion per step. Addition-
ally, the naïve requirement for p grows exponentially in d.
On the other hand, the simulation approach is fully par-
allelizable over p, while the moment matching approach
the number of nonparallelizable operations is O(d2) with
the Cholesky decomposition being the bottleneck, and
the linearization approach is nonparallelizable. While the
linearization approach has the lowest number of function
evaluations with respect to d, the cost of computing the
Jacobian can be prohibitively large for arbitrarily com-
plex models. Nevertheless, the Jacobian is available in
closed-form for GPs and may be evaluated reasonably fast
for neural network based drifts, see App. B.2 for empir-
ical computational costs of evaluating the Jacobian when
growing the network size. Thus we expect the FPK ap-
proximation schemes to always be beneficial in CPU-only
cases (incl. CPU multi-threading and embedded devices).
In multicore GPU use, for low-dimensional d, sampling
remains appealing if GPU memory does not become a
bottleneck.

3 Experiments

The goals of the experiments are three-fold: We first provide a study of the computational complexity.
Then, we look into properties of the GP-SDE model from Sec. 2.1, where the experiments are
concerned with showcasing model specification rather than inference. Finally, we consider two
benchmark problems with high-dimensional inputs for learning a latent SDE model, where we test
the performance of the approximations presented when the model is not defined by GPs, as the SDE
methods presented in Sec. 2 are model-agnostic.

Timing Experiments To confirm the analysis in Sec. 2.6 and provide a practical insight, we run
numerical experiments with the error of final marginal mean/covariance controlled. We use a high-
dimensional model of d independent Beneš SDEs (dz(t) = tanh(z) dt + dβ(t), see [40]) with
different z0 per dimension. The model is non-linear and solution-space multi-modal, but both p(z, t)
and the marginal moments (m(t),P(t)) are available in closed form (see App. B.1). In comparison
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Fig. 2: Empirical timing experiments with error

of final margins matched.
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(b) Forward prediction

Fig. 3: Results on rotating MNIST. In (a), true and approximated

latent trajectories, and in (b), progression of the rotating MNIST

prediction at varying angles.

Outlook

We highlight the usefulness of weak solutions in rotating

MNIST and motion capture examples

For the MNIST example, we encoded the observations using a

VAE, designed as in [3], further lowering the computational

cost related to solving the SDEs defined by the GP-SDE model

In Fig. 3, both moment matching methods (quadrature) and

linearization are able to produce a faithful representation of

the distribution defined by Euler–Maruyama sampling with

multiple trajectories

In the paper, we include results for a motion capture example

that demonstrates that weak solutions can perform close to

state-of-the-art, while being considerably more efficient
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Code and resources available:

https:
//github.com/AaltoML/scalable-inference-in-sdes
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