Scalable Inference in SDEs by Direct Matching of the Fokker–Planck–Kolmogorov Equation

TL;DR

- Simulation-based techniques for solving stochastic differential equations (SDEs) are the *de facto* approach for inference in the machine learning community
- We advocate the use of alternative methods for solving SDEs by approximating the typically intractable Fokker-Planck-Kolmogorov equation
- We revisit classical SDE theory and directly match the moments of weak solutions, allowing us to forego sampling in lieu of more scalable approaches
- This workflow is fast, scales to high-dimensional latent spaces, and is applicable to scarce-data applications
- We demonstrate the methodology on general SDE problems and GP-SDE models, where a GP encodes prior knowledge into the SDE dynamics

Gaussian Process SDEs

- We are concerned with continuous-time dynamical modelling in machine learning, typically in the *latent* space of models
- Consider an ODE model of some latent state $\mathbf{z}(t)$ defined as

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{z}(t) = \mathbf{v}_{\theta}(\mathbf{z}(t), t), \qquad (1)$$

where $\mathbf{v}_{\theta}(\mathbf{z}(t), t)$ is a velocity field

Instead of a deterministic field, as introduced in [1], we set the prior to be a Gaussian process

$$\mathbf{v}(\mathbf{z},t) \sim \mathrm{GP}(\boldsymbol{\mu}(\mathbf{z}), \boldsymbol{\kappa}(\mathbf{z}, \mathbf{z}')), \tag{2}$$

where μ is the GP mean and κ the kernel.

Instead of the random ODE formulation defined by Eq. (1) and (2), we write the model as an Itô SDE matching the GP

$$d\mathbf{z}(t) = \mathbf{f}(\mathbf{z}, t) dt + \mathbf{L}(\mathbf{z}, t) d\boldsymbol{\beta}(t).$$
(3)

- The GP-SDE above has its drift $\mathbf{f}(\cdot, \cdot)$ set as the GP mean, and diffusion $\mathbf{L}(\cdot, \cdot)$ as a square-root factor of the Gaussian covariance given by the GP model
- Allows for encoding prior knowledge into the dynamics, such as curl-freeness or divergence-freeness in $\mathbf{v}_{\theta}(\mathbf{z}(t), t)$

Fig. 1: Views into solutions to SDEs: simulation-based solutions, the FPK solution, and a Gaussian approximation for a GP-SDE model conditioned on the arrow observations.

Matching Moments of the Fokker–Planck–Kolmogorov (FPK) Equation

 The FPK PDE gives the weak evolution of the SDE (3), describing the development of the marginal density $p(\mathbf{z}, t)$:

$$\frac{\partial p(\mathbf{z},t)}{\partial t} = -\sum_{i} \frac{\partial}{\partial z_{i}} [f_{i}(\mathbf{z},t) p(\mathbf{z},t)]$$

$$\frac{1}{2}\sum_{i,j}\frac{\partial^2}{\partial z_i\partial z_j}\left\{ [\mathbf{L}(\mathbf{z},t)\,\mathbf{Q}\,\mathbf{L}^{\top}(\mathbf{z},t)]_{ij}\,p(\mathbf{z},t)\right\}.$$

The PDE is typically intractable, but assuming $p(\mathbf{z},t) \approx N(\mathbf{m}(t), \mathbf{P}(t))$ is Gaussian we write down the ODE describing the evolution of the moments:

$$\frac{d\mathbf{m}}{dt} = \int \mathbf{f}(\mathbf{z}, t) \operatorname{N}(\mathbf{z} \mid \mathbf{m}, \mathbf{P}) d\mathbf{z} \text{ and}$$

$$\frac{d\mathbf{P}}{dt} = \int \mathbf{f}(\mathbf{z}, t) (\mathbf{z} - \mathbf{m})^{\top} \operatorname{N}(\mathbf{z} \mid \mathbf{m}, \mathbf{P}) d\mathbf{z}$$

$$+ \int (\mathbf{z} - \mathbf{m}) \mathbf{f}^{\top}(\mathbf{z}, t) \operatorname{N}(\mathbf{z} \mid \mathbf{m}, \mathbf{P}) d\mathbf{z}$$

$$+ \int \mathbf{L}(\mathbf{z}, t) \mathbf{Q} \mathbf{L}^{\top}(\mathbf{z}, t) \operatorname{N}(\mathbf{z} \mid \mathbf{m}, \mathbf{P}) d\mathbf{z}$$

• The integrals above are not tractable: further approximation is required, such as linearization or Gaussian quadrature methods such as the 3rd order cubature (see [2])

Ella Tamir

Prakhar Verma

Reduced Computational Cost

- One of the key advantages of weak solution concepts are lower computational costs, especially in high-dimensional problems
- Faithfully representing the underlying distribution through sampling methods, such as Euler-Maruyama, often requires multiple trajectories.
- In contrast, a single step in the linearization moment ODEs can be completed with O(1) evaluations of the drift, diffusion and the Jacobian, and 3rd order cubature evaluates drift and diffusion O(d) times
- We empirically test the runtime of approximations: see plots below for wall-clock timing results for a multi-dimensional Beneš SDE, with a setting where the number of E-M trajectories is selected to match the accuracy of the approximations for comparability

Fig. 2: Empirical timing experiments with error of final margins matched.

(a) Latent trajectories (b) Forward prediction

Fig. 3: Results on rotating MNIST. In (a), true and approximated latent trajectories, and in (b), progression of the rotating MNIST prediction at varying angles.

Outlook

- We highlight the usefulness of weak solutions in rotating MNIST and motion capture examples
- For the MNIST example, we encoded the observations using a VAE, designed as in [3], further lowering the computational cost related to solving the SDEs defined by the GP-SDE model
- In Fig. 3, both moment matching methods (quadrature) and linearization are able to produce a faithful representation of the distribution defined by Euler–Maruyama sampling with multiple trajectories
- In the paper, we include results for a motion capture example that demonstrates that weak solutions can perform close to state-of-the-art, while being considerably more efficient

References

- [1] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, "Neural ordinary differential equations," in Advances in Neural Information Processing Systems 31 (NeurIPS), pp. 6571–6583, Curran Associates, Inc., 2018.
- [2] S. Särkkä and A. Solin, Applied Stochastic Differential Equations. Cambridge University Press, 2019.
- [3] C. Yıldız, M. Heinonen, and H. Lahdesmaki, "ODE²VAE: Deep generative second order ODEs with Bayesian neural networks," in Advances in Neural Information Processing Systems *32 (NeurIPS)*, pp. 13412–13421, Curran Associates, Inc., 2019.

Code and resources available:

https: //github.com/AaltoML/scalable-inference-in-sdes

