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TL;DR

What we do…

Consider approximate Bayesian inference for generative models with

diffusion process priors.

Leverage an alternative parameterization and optimization algorithm for

Gaussian variational inference, drawn from literature on linear diffusions

(i.e., Gaussian processes).

Propose an approximate (variational) inference algorithm.

Connect to posterior statistical linearization—from signal processing—and

drastically improve inference time.
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Fig. 1: Evolution of ELBO over iterations for the Ornstein–Uhlenck

process. The proposed method gets to the optimal in just a one-step

update, whereas Archambeau’s method takes multiple steps.
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Fig. 2: Mean and 95% confidence interval of the posterior obtained on

Ornstein-Uhlenbeck process by the proposed method. All the methods

give identical posterior, so we plot only one.
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Fig. 3: Mean and 95% confidence interval of the posterior obtained on

the non-linear process: Double-Well. The posterior obtained by the

proposed method is able to capture the two wells.

Motivation

Latent Diffusion Process Model

Diffusion process: dxt = fθ(xt, t) dt + dβt

Sparse observations: yi | x ∼ p(yi | x(ti))

Probabilistic Inference

Given a data set D = {(ti, yi)}N
i=1, we are interested in the posterior process:

p(X | D) = Z−1
∏N

i=1
p(yi | xi) p(X)

Computing this posterior over state paths X and the marginal likelihood p(y)
is intractable. We resort to approximate inference.

Gaussian Variational Inference (VI)

Approximate Inference as Optimization

Variational Inference (VI) turns inference into the optimization problem

min
q∈Q

DKL [q(X) ‖ p(X | D)] = max
q∈Q

L(q),

where L(q) is the variational evidence lower bound (ELBO),

L(q) = Eq(X)[log p(y | x)] − DKL [q(X) ‖ p(X)] < log p(y),

and Q is a set of distribution chosen to make L(q) tractable and to contain a

good approximation to the true posterior.

Gaussian approximate posterior

We set Q = {diffusions with linear drift} = {Markovian GPs}

Past work on Gaussian VI for SDE: Archambeau et al.

Parameterizing q: SDE with linear drift and shared diffusion (with the prior)

q : dxt = (Atxt + bt) dt + dβt,

Problems

Slow fixed point optimization algorithm for inference.

(At, bt) mix the prior and posterior (bad for learning).

drift Brownian motion

Proposed Method: Inspiration

Inspiration #1: Natural gradient descent for linear diffusions

Linear diffusion = Gaussian Processes: GP are in exponential family

p(x) = exp(〈T (x), ηp〉 − A(ηp))

Mirror ascent in exponential family, using the expectation parameterization

µ = E[T (x)], with KL penalty leads to efficient inference, in the natural parame-

terization: ηq = ηp + λ︸︷︷︸
sites

,

qk+1 = arg max
q∈Q

(
〈∇µL(q)|µ=µk, µ〉 − 1

ρDKL
[
q ‖ qk

])
λk+1 = (1 − ρ)λk + ρ ∇µEq(X)[log p(y | x)︸ ︷︷ ︸

local gradients

]

Inspiration #2: Statistical posterior linearisation

Inference for linear diffusion possible in closed form.

Many inference methods include linearization of the drift f along the

ongoing approximate posterior

(A, b) = arg minEq(x)‖Ax + b − f (x)‖2
Q−1

Proposed Method: Algorithm

We combine statistical linearization and mirror ascent in two steps:

Linearize the prior diffusion pk
L ≈ p at iterate qk

Run Mirror ascent on L(q): ηk+1 = ηk
L + λk+1

Expanding the loss

L(q) = Eq(X)[log p(y | x)]
+ (DKL [q(X) ‖ pL(X)] − DKL [q(X) ‖ p(X)])︸ ︷︷ ︸

linearization error

− DKL [q(X) ‖ pL(X)]︸ ︷︷ ︸
KL to linearized prior

,

MD leads to the updates

λk+1 = (1 − ρ)λk + ρ∇µVE[q]︸ ︷︷ ︸
data sites: sparse

+ρ (λk − ∇µDKL [q ‖ p]])︸ ︷︷ ︸
error sites: dense

Properties of Our Method

For linear diffusion, we recover the GP algorithm in [1] (no linearization error).

For Gaussian likelihoods, the data sites reach their optimal value in a single

step for ρ = 1.
Decoupling the prior, data, and error contribution to the posterior leads to

faster learning of the hyperparameters θ of the diffusion ηk+1 = ηk
L(θ) + λk+1.

Experiments

Linear process prior: The Ornstein–Uhlenbeck process (Fig. 1–2)

dxt = αxt dt + dβt

Compare against the method of Archambeau et al. [2].

Single-step update for inference is obtained.

Non-linear process prior: The double-well process (Fig. 3)

dxt = 4xt(1 − x2
t ) dt + dβt

Conclusion

Alternative site-based parameterization for generative models with diffusion

process priors motivated by recent advances in Gaussian processes.

Connecting with the literature on posterior statistical linearization.

Drastically improve inference time in processes with linear as well as

non-linear diffusion process priors.
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