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Sequential Learning in GPs
▶ Sequential decision-making problems like

▶ Bayesian Optimization
▶ Reinforcement learning

▶ In offline setting, SVGP is a popular model but fails in sequential setting with
limited past data.
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VI in GPs

▶ SVGP ELBO:∑
i∈(Dold∪Dnew)

Equ(fi )[log p(yi | fi)]− DKL[q(u) ∥pθ(u)]

▶ Approximated ELBO with memory:∑
i∈Dnew

Equ(fi )[log p(yi | fi)]+S
∑

i∈M Equ(fi )[log p(yi | fi)]+logZ − Eq(u)[logN(ỹ | u, Σ̃)]︸ ︷︷ ︸
DKL[q(u) ∥ pθ(u)]

▶ Memory selection technique?
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Bayesian Leverage Score

▶ Ridge leverage score, diag(Kxx(Kxx + λ I)−1).
▶ Bayesian leverage score (BLS),

hbls
i :=

[
Kxx(Kxx + diag(β−1

∗ ))−1]
ii = β∗

i v∗
f ,i,i .

▶ BLS score indicates how difficult the example was for the model.
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BLS: Split MNIST

High BLS Low BLS
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Training:
Testing:

Task:

Task 0 , 1 2 , 3 4 , 5 6 , 7 8 , 9

#1 .95(.020)

#2 .74(.039) .95(.005)

#3 .83(.052) .85(.013) .96(.003)

#4 .78(.014) .86(.012) .92(.008) .96(.003)

#5 .94(.007) .84(.009) .82(.022) .92(.015) .87(.004)

Figure 2: (a) Progression of overall accuracy on split MNIST. Training starts with 0 vs.
1 and each task introduces new digits while testing on all classes thus far. The
overall accuracy drops when introducing a new task, but recovers and does not
suffer from forgetting. (b) Test accuracy on split MNIST over all tasks thus far.

3. Experiments

Split MNIST (Zenke et al., 2017) is a continual learning data set and a variant of MNIST
where training data comes in five batches of two digits each. Performance is measured by
multi-class classification accuracy on all digits seen thus far. The model at each step has
access only to the current batch of the classification task and thus should learn incrementally
on different tasks without forgetting about the previous ones. Previous work (Bui et al.,
2017)fails (Fig. 2) in such a setup as it forgets about the previous tasks (Bui et al. (2017).
Our proposed model is able to retain information about previous tasks with only a marginal
drop in accuracy when the new task is introduced (cf. Fig. 2).

We show that BLS is a valid metric as it determines examples of difficulty. We perform
the same continual learning experiment on split MNIST, but this time we select data points
from our training set and move them to the test set. Points are chosen either randomly or
based on the BLS score. We then retrain the model on the reduced training set and test on
the increased testing set. Randomly selecting has a small negative effect on performance.
However, using the BLS score is detrimental, showing the importance of the examples for
the model that are moved to the test set. Fig. 1(b) shows digits with the highest BLS
score. Another ablation study showcases the size of memory needed and how it affects the
model accuracy. We train our sequential model with different memory sizes using BLS and
report test accuracy (Fig. 1(c)). As expected, the accuracy increases with memory size,
but remarkably a memory size of just 5% achieves optimal performance. Fig. 1(d) shows
samples from memory after the model has observed all the tasks.

4. Conclusion

The lack of access to previous data for a sequential sparse GP model is problematic for
hyperparameter learning. In this paper, we solve this problem by introducing the concept
of memory. This approach is novel and different from previous work, which attempts to
replace missing data with additional regularization terms in the ELBO (Bui et al., 2017). We
further derive a novel Bayesian leverage score, for selecting memory, and show its usefulness
in a sequential learning data set, split MNIST.

10% memory size
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Thanks!


