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Vlin GPs

» SVGP ELBO:

2 ie(DaguDrew) Bau(ry[log P(Yi | £)] = Dy [q(u) || po(u)]
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> icDoow Equ(iyllog Wi | £)1+S > ic vt Equ(ryllog P(Vi | fi)]+log 2 — Eqqullog N(F | u, )]
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» Memory selection technique?
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Bayesian Leverage Score

> Ridge leverage score, diag(Kyx(Kxx + A1)~ 1).
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> Ridge leverage score, diag(Kyx(Kxx + A1)~ 1).
> Bayesian leverage score (BLS),
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Bayesian Leverage Score

> Ridge leverage score, diag(Kyx(Kxx + A1)~ 1).
> Bayesian leverage score (BLS),

h?ls = [KXX(Kxx + diag(ﬁ;1))71]jl‘ = B} Vf*,i,i'

» BLS score indicates how difficult the example was for the model.
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Split-MNIST
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10% memory size
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Thanks!
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