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Dynamical systems present in the real world are often well represented using
stochastic differential equations (SDEs) incorporating the sources of stochasticity.
With the recent advances in machine learning (ML), research has been done to
develop algorithms to learn SDEs based on observations of dynamical systems.

The thesis frames the SDE learning problem as an inference problem and aims
to maximize the marginal likelihood of the observations in a joint model of the
unobserved paths and the observations through an observation model. As this
problem is intractable, a variational approximate inference algorithm is employed
to maximize a lower bound to the log marginal likelihood instead of the original
objective. In the variational framework, Gaussian processes (GPs) have been used
as approximate posterior over paths. However, the resulting algorithms require
fine discretization of the time horizon resulting in high complexity.

The recent advances related to exploiting sparse structure in the GPs are ex-
plored in the thesis, and an alternate parameterization of the approximate distri-
bution over paths using a sparse Markovian Gaussian process is proposed. The
proposed method is efficient in storage and computation, allowing the usage of
well-established optimizing algorithms such as natural gradient descent. The ca-
pability of the proposed method to learn the SDE from observations is showcased
in the two experiments: the Ornstein–Uhlenbeck (OU) process and a double-well
process.
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Abbreviations and Acronyms

ELBO evidence lower bound

GP Gaussian process

GPR Gaussian process regression

GP-SDE Gaussian process variational approximation for stochastic
differential equation (Archambeau et al., 2007, 2008)

IID independent and identically distributed

IVP initial value problem

KL Kullback–Leibler divergence

LTI linear time invariant

ML machine learning

ODE ordinary differential equation

OU Ornstein–Uhlenbeck process

S2VGP doubly sparse variational Gaussian process

SDE stochastic differential equation

SGD stochastic gradient descent

SGP-SDE Sparse Gaussian process stochastic differential equation, the
proposed method

SSM state-space model

SVGP sparse variational Gaussian process

VI variational inference
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Chapter 1

Introduction

A dynamical system is a system whose configuration or state evolves following
a differential equation. It is present in abundance in the real world, from
population growth and celestial body to healthcare (Eraker, 2001; Golightly
& Wilkinson, 2011; van Kampen, 2007). If the system is deterministic, it
may be described by an ordinary differential equation (ODE). However, most
real-world dynamical systems are stochastic, best described by a stochastic
differential equation (SDE), further discussed in Section 2.3.

Learning about a dynamical system gives insights about it, helping opti-
mize the system, evaluate it, and even in decision-making. However, it is a
challenging task. A dynamical system may have two sources of stochasticity;
one from the describing SDE and another from the observation model. Both
of these sources can be complex, leading to intractability. Often, the obser-
vations of a dynamical system are at discrete time intervals, and the aim is
to learn a continuous system adding to the complexity of the task.

Machine learning (ML), the science of algorithms that learn from data
over time, is ubiquitous nowadays, with applications ranging from healthcare,
finance to education impacting millions of people across the globe (Bhardwaj
et al., 2017; Heaton et al., 2018; Ciolacu et al., 2017). With the recent
advances in ML, research has been done to develop new algorithms to learn
the SDE based on the observations of a dynamical system. Bayesian methods
have been quite popular for stochastic systems due to their inherent property
of handling stochasticity. Gaussian processes (GPs) (Rasmussen & Williams,
2006) are used extensively for dynamical systems due to their well-established
connection with SDEs (Särkkä & Solin, 2019, Chapter 12).

A stochastic differential equation (SDE) consists of a deterministic term,
drift, and a stochastic term, diffusion. A dynamical system with linear SDEs
and a Gaussian observation model leads to a closed-form expression for the
posterior for the state trajectory using Bayesian methods and conjugate prop-
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CHAPTER 1. INTRODUCTION 9

erties. However, for non-Gaussian likelihoods, approximate inference algo-
rithms are employed to approximate the intractable posterior. Non-linear
SDEs involve more non-conjugate terms leading to sophisticated approximate
algorithms to make the problem tractable. Variational inference (VI) is one
of the popular approximate inference methods in statistical machine learn-
ing, discussed in Section 2.2. Many state-of-the-art methods to learn SDEs
employ VI, which involves optimizing an evidence lower bound (ELBO). An
essential step in these methods is the fine discretization of the time horizon,
leading to a high number of parameters.

The thesis aims to develop a method to learn the SDE describing a dynam-
ical system with an arbitrary likelihood based on a set of noisy observations.
The problem is framed as an inference problem, and variational inference
(VI) is used. A novel alternate parameterization to the approximate distri-
bution over paths is proposed using a sparse Markovian Gaussian process,
inspired by the doubly sparse Gaussian process (Adam et al., 2020), discussed
in Section 2.6. It reduces the complexity of the method both in storage and
time, allowing the usage of well-established optimizing algorithms such as
natural gradient descent. As SDEs are continuous over time, ELBO differs
from that of the standard VIs prominently used in machine learning tasks
and is derived incorporating the continuous nature of SDEs.

The thesis is structured as follows: Chapter 2 discusses the generative
models, SDEs, GPs, approximating methods, and sets a base for the fol-
lowing chapters. In Chapter 3, the recent research work is discussed, and
an in-depth review of two closely related research papers is done. Chap-
ter 4 introduces the proposed method, model specifications, the objective for
variational inference (VI), ELBO, is derived, and the natural gradient-based
optimization algorithm is presented. Chapter 5 discusses the experiments
on two processes: the Ornstein–Uhlenbeck (OU) and a double-well process.
The posterior obtained for the two processes are evaluated and compared
with other models in Chapter 6, and plausible future works are discussed.
Chapter 7 rounds off with a conclusion.



Chapter 2

Background

This chapter discusses the fundamental concepts that will set the stage for the
further chapters discussing different methods and models with the primary
aim of learning and performing inference in a dynamic system with SDE
priors. The chapter starts by introducing generative models in Section 2.1
and inference in these models. Then, approximate inference as an inference
method is discussed to deal with intractability, and Kullback–Leibler (KL)
divergence and variational inference (VI) are introduced in Section 2.2. In
Section 2.3, dynamic systems are introduced, followed by a brief introduction
to SDEs, the use of SDE priors in learning the dynamic systems, SSMs, and
Markovian Gaussian process. The chapter concludes with a discussion on
complexity in Gaussian processes reviewing SVGP in Section 2.5 and S2VGP
in Section 2.6.

2.1 Generative models

Formally, machine learning models are divided into two types: generative
models and discriminative models. A generative model is one where the
joint distribution of the observed variable and the target variable is learnt
however in discriminative models the conditional distribution between them
is learnt (Ng & Jordan, 2002).

Suppose, X is our observed variable and Y is the target variable. Then,

1. Generative model focuses on learning p(X,Y)

2. Discriminative model focuses on learning p(Y | X)

From the definition of both the models, it can be inferred that the generative
models are used to generate more data however discriminative models is used

10



CHAPTER 2. BACKGROUND 11

only to get the target value. Alternatively, generative models are also defined
as the ones which aim to learn p(X | Y).

Using Bayes’ rule, generative model is written as

p(X | Y) =
p(Y | X) p(X)

p(Y)
, (2.1)

where p(X | Y) is the posterior distribution, p(Y | X) is the likelihood
distribution, p(X) is the prior distribution, and p(Y) is the marginal
likelihood. As p(Y) is a constant, the posterior distribution is written as

p(X | Y) ∝ p(Y | X) p(X). (2.2)

In generative models, there are two ways to perform inference: exact and
approximate inference. Exact inference is possible only under certain condi-
tions; when the unobserved state is limited and discrete, or conjugate pairs
are used which makes the calculation of posterior possible in closed form.
However, most of the time exact inference is not tractable so approximate
inference is used (Bishop, 2006, Chapter 10).

2.2 Approximate inference

Approximate inference is one of the inference methods where the exact pos-
terior distribution is approximated rather than solving it in exact form. The
two most popular methods for approximate inference are Monte Carlo meth-
ods and variational inference (VI). Monte Carlo method is a sampling-based
method, samples are drawn from the posterior distribution to approximate
it, however in variational inference the posterior distribution is approximated
with another parametric distribution (Bishop, 2006, Chapter 10, 11).

In this thesis, the focus is on VI and thus it is discussed in detail. How-
ever, before discussing VI, KL divergence is introduced as it is an important
component of it.

2.2.1 Kullback–Leibler (KL) divergence

KL divergence is used to measure distance between two distributions. Math-
ematically, it is defined as

DKL [P ‖Q] =
∫

q(x) log q(x)
p(x)

dx, (2.3)
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where, p(x) and q(x) are two probability density functions of the two distri-
butions P and Q.

From Eq. (2.3), it is inferred that KL divergence is asymmetric and
does not follow triangle inequality. Also, DKL >= 0 and is zero only when
p(x) == q(x).

Example: Suppose, the true distribution, P, is a Gaussian distribution
with mean 0 and variance 0.5. Three distributions, namely Q1, Q2, Q3,
with mean 0.5, 0.2, 0 and variance 0.35, 0.5, 0.45 respectively are avail-
able and the goal is to find the distribution which is closest to the true
distribution P.

Figure 2.1 showcases the three probable distributions along with the
KL divergence values and the true distribution. It can be inferred both
from the plots and from the KL divergence value that Q3 is the closest
to P .
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DKL[P ‖Q3] = 0.012

Figure 2.1: True distribution, P, along with the probable distribu-
tions, Q1, Q2, Q3, and their KL divergence values.

2.2.2 Variational inference

Variational inference (VI) is a method of approximate inference where an
intractable distribution is approximated with a tractable distribution.

Suppose, P is an intractable distribution and is approximated by a
tractable distribution, Q, belonging to a particular family of distributions.
To compare the two distributions, KL divergence is used. Thus, the aim is
to minimize the KL divergence between these two distributions.
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Example: Suppose, there is a model that is projecting the data from
the observation space to the latent space. The aim is to learn a distri-
bution, p(Z | Y), where Y is the data in the observation space and Z is
the corresponding data in the latent space. Using Bayes’ theorem, the
interested distribution is written as

p(Z | Y) =
p(Y | Z) p(Z)

p(Y)
, (2.4)

where p(Y | Z) is the likelihood, p(Z) is the prior, and p(Y) is the
marginalized likelihood, which is a constant.

The goal is to approximate the posterior distribution with q(Z). To
compare the two distributions, true and approximating, KL divergence
is used with the objective to minimize it. Using Eq. (2.3) and Eq. (2.4),
the KL is written as

DKL [q(Z) ‖ p(Z | y)] = Eq(Z)[log q(Z)− log p(Z | Y)]

= Eq(Z)[log q(Z)− log p(Y | Z)− log p(Z) + log p(Y)]

= DKL [q(Z) ‖ p(Z)]− Eq(Z)[log p(Y | Z)] + log p(Y)

log p(Y) = −DKL [q(Z) ‖ p(Z)] + Eq(Z)[log p(Y | Z)]
+ DKL [q(Z) ‖ p(Z | Y)] (2.5)

As log p(Y) is a constant, from Eq. (2.5), it is inferred that minimizing
DKL [q(Z) ‖ p(Z | Y)] is equivalent to maximizing the sum of the other two
terms, Eq(Z)[log p(Y | Z)]−DKL [q(Z) ‖ p(Z)], also known as evidence lower
bound (ELBO).

Thus, the objective of minimizing the KL can also be framed as maxi-
mizing the ELBO.

2.3 Dynamic system

Dynamic system is a system where the motion occurs; components or vari-
ables evolve over time. Suppose, there is a dynamic system where a variable y
is observed over time t. Further, there is a hidden state x that is unobserved
which governs the evolution of y over time. Thus, using Bayes’ theorem, the
model is written as

p(xt | yt) ∝ p(yt | xt) p(xt),
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where y is observed through an observation model. If Gaussian, the obser-
vation model is written as

p(yt | xt) ∼ N (yt | Hxt, R),

where t ∈ [0, T ](McGoff et al., 2015).
Furthermore, for inference, a prior needs to be introduced over x. For

dynamic modelling, differential equations become a natural option for pri-
ors. Due to the robustness of SDEs over ODEs, SDEs are more preferred.
However, before discussing the models with SDE priors, SDEs are briefly
discussed.

2.3.1 Stochastic differential equation (SDE)

Differential equations are the equations relating functions with their deriva-
tives with applications ranging in fields including physics, chemistry, and
economics. The dynamics of any system can be expressed in the form of
a differential equation governing the change of the state of the system over
time:

dx(t)

dt
= f(x(t), t), (2.6)

where x(t) is the state of the system at time t and f(.) is the governing
function. This is known as an ordinary differential equation (ODE) (Griffiths
& Higham, 2010).

Given the initial value, Eq. (2.6) is solved by:

x(T ) = x(0) +
∫ T

t=0
f(x(t), t) dt, (2.7)

which is commonly known as an initial value problem (IVP). A numerical
method used to solve IVP is the Euler’s Method

xt+h = xt + f(x(t), t)h, (2.8)

where h is the time-step(Griffiths & Higham, 2010, Chapter 2).

Example: Consider a spring-mass model

d2x(t)

dt2
+ γ

dx(t)

dt
+ v2x(t) = w(t). (2.9)

In the state-space form, it is written as:

f(X(t), t) =

(

0 1
−v2 −γ

)

X(t) +

(

0
1

)

w(t), (2.10)
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where f(X(t), t) = dX(t)
dt

and X(t) =

(

x(t)
dx(t)
dt

)

.

Let the parameters be v = 2, γ = 1 and w(t) = 0. The trajectory
simulated using Euler’s method for t ∈ [0, 10] with step-size 0.05 and
initial position x0 = [0, 1] is shown in Figure 2.2.

0 2 4 6 8 10

−0.2

0.0

0.2

0.4

Time (t)

x
2

Figure 2.2: Euler solution for the spring-mass IVP model and its com-
parison with the true solution.

One of the drawbacks associated with ODEs is that it does not
include the possible uncertainty that might be present in the sys-
tem/environment/sensors. One of the plausible ways of including them is
adding Gaussian noise

dx(t)

dt
= F(x(t), t) + ǫ, (2.11)

where ǫ ∼ N (0, I). In Eq. (2.11), the intensity of noise is constant which
can be made variable by introducing a new function L(·)

dx(t)

dt
= F(x(t), t) + L(x(t), t) ǫ. (2.12)

A problem associated with Eq. (2.12) is that it is not globally differ-
entiable because of the discontinuous Gaussian white noise. Itô integral is
solved to mitigate this issue which leads to the following equation, with the
use of Brownian motion,

dx(t) = F(x(t), t) dt+ L(x(t), t) dβ(t), (2.13)

where F(x(t), t) is known as a drift function, L(x(t), t) as a diffusion function,
and dβ(t) is a Brownian motion with spectral density Q. A few details in the
derivation is omitted which can be found in Särkkä & Solin (2019, Chapter
3).
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A common numerical method to solve an SDE, Eq. (2.13), is Euler–
Maruyama, (Sauer, 2012)

xt+h = xt + F(xt, t)h+
√
hL(xt, t)ω(t), (2.14)

where ω(t) ∼ N (0,Q) and h is the time-step.

Example: In Eq. (2.10), if the driving force is considered as a Gaussian
noise, the equation is written as

f(X(t), t) =

(

0 1
−v2 −γ

)

X(t) +

(

0
1

)

ǫ(t), (2.15)

where ǫ(t) ∼ N (0,Q). Now, by employing Euler–Maruyama with the
same values as in the previous example and Q = 0.005 I, the trajectories
are simulated as shown in Figure 2.3.

0 2 4 6 8 10

−0.3

0

0.3

Time (t)

x
2

Figure 2.3: 100 Euler–Maruyama solution trajectories for the spring-mass
IVP model with Gaussian noise and the mean trajectory.

SDEs give stochastic solutions(trajectories) as compared to the deterministic
solution of an ODE. Thus, one of the main advantages of SDEs over ODEs
is its robustness and capability to quantify uncertainty.

2.3.2 SDE priors

As discussed in Section 2.3, a dynamic system with Gaussian observation
model is written as

p(xt | yt) ∝ p(yt | xt) p(xt),
p(yt | xt) ∼ N (Hxt,R).

Further, to learn the dynamics, an SDE prior over x is introduced

dx(t) = f(x(t), t) dt+ L(x(t), t) dβ(t).
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With SDE prior, one assumption made is that the system is Markovian. By
Markovian, it is meant that at any time t the conditional probability of the
future event given the entire past is same as the conditional probability of
that future event given the state at time t.

To perform inference, that is calculate the posterior, approximate infer-
ence methods can be used. As discussed in Särkkä & Solin (2019), SDEs with
a linear drift function have a relation with GPs. Thus, with an assumption
of linear SDE and using the property of Markovian, VI can be performed
with the family of approximating distribution to be Markovian GPs.

2.3.3 State-space models

State-space model (SSM) is a modelling method where the state of a dynamic
system is represented as a set of first order differential or difference equations.
A state of a system is defined as the minimal set of variables that fully
describe the system that is it has enough information to predict the future
state/behaviour (Solin, 2016, Chapter 3).

Example: Consider a linear time-variant dynamic model, where x ∈ R
n

is the state vector, y ∈ R
m is the observed vector, and velocity of x is

represented as ẋ(t). Then, the state-space model equations are written
as

ẋ(t) = A(t)x(t) +B(t)u(t),

y(t) = C(t)x(t) +D(t)u(t),

where x(t) ∈ R
n is the state vector, y(t) ∈ R

m is the observed vec-
tor, u(t) ∈ R

p is the control vector, A(t) ∈ R
n×n is the system matrix,

B(t) ∈ R
n×p is the input matrix, C(t) ∈ R

m×n is the output matrix,
D(t) ∈ R

m×p is the feedback matrix.

SSMs are written for both continuous and discrete time models as well as
time-variant and time-invariant models. One of the prime advantages of SSM
is the compact and concise representation of the system which helps in quick
and efficient analysis.

2.4 Markovian Gaussian process

A Gaussian process (GP) (Rasmussen & Williams, 2006) is a distribution
over functions. Formally, a GP is defined as a random function, f(x), on
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an input space R
d characterized by a mean function, µ(x), and a covariance

function, κ(x, x′). The GP prior over f(x) is written as

f(x) ∼ GP(µ(x), κ(x, x′)), (2.16)

where µ(x) = E[f(x)] and κ(x, x′) = Cov(f(x), f(x′)).
As discussed, a Markovian process has the distribution of xn+1 condition

on {x0,x1, . . . ,xn} same as the distribution condition on only xn.
Thus, a stochastic process is a Markovian Gaussian process if it follows

the properties of both Gaussian and a Markovian process (Rasmussen &
Williams, 2006, Appendix B).

2.5 Sparse variational Gaussian process

One of the major limitations of a GP model is the computational complexity
as it involves inverting a R

n×n matrix which is an O(n3) operations. Thus,
it scales poorly with data.

Lately, research has progressed in this direction with one of the most
prominent work being sparse variational Gaussian process (SVGP) (Hens-
man et al., 2015b) which uses variational approximation. It uses m inducing
points rather than the actual n data points; inducing points are not neces-
sarily data points and are learnt over time. It reduces the computational
complexity to O(m3). The augmented model with inducing points is written
as p(y, f, u) = p(y | f) p(f | u) p(u).

Variational inference (VI) is used to approximate the posterior p(f, u | y)
by q(f, u) and the family of distribution Q is chosen to be of the form
q(f, u) = p(f | u) q(u) where q(u) ∼ N (m,S).

The ELBO can be calculated using Jensen’s inequality as

log p(y) ≥ Eq(u, f) [log p(y | f)]− Eq(u, f)

[

log
q(f, u)

p(f, u)

]

≥ Eq(f) [log p(y | f)]−DKL [q(u) ‖ p(u)] . (2.17)

Example: There is a set of 200 data points and the goal is to condition
a GP model on it. However, due to high complexity of a classical GP
model, SVGP with 20 learnable inducing points is used.

The ELBO is optimized for 40 epochs using Adam optimizer (Kingma
& Ba, 2015) with learning rate 0.05.
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Figure 2.4: Mean and 95% confidence interval of the posterior of the
SVGP model along with the learnt inducing points(cyan) and the data
points(black)

2.6 Doubly sparse variational Gaussian

process

Adam et al. (2020) researched on combining the benefits of SSM and SVGP
to tackle the problem of computational complexity in GPs. They combine the
idea of inter-domain inducing features with the state-space GP formulation
referring to it as doubly sparse variational Gaussian process (S2VGP). The
linear operator, ψ, for inducing features is chosen as

ψi : f → s(zi) = [f(zi), . . . , f
(d−1)(zi)]

⊤ ,

where Z = [z1, . . . , zm] are the ordered inducing points and s(·) represent the
states.

This leads to the inducing states U = {ψi[f ]}Mi=1 be Markovian and follow

a Gaussian distribution that is pψ(U) = p(u1)
∏M

i=1 p(ui+1 | ui). Another in-
teresting property is that the posterior of the function is dependent only on
the closest right and left inducing points, p(f(xn) | u) = p(f(xn) | un−,un+).
The ELBO of S2VGP is defined as

ℓ =
∑

n Eq[log p(yn | f(xn))]− 1
2
tr(Qψ Σuu) +

1
2
|Σuu|+ c(µu, pψ). (2.18)

For more details, reader is advised to go through Adam et al. (2020).



Chapter 3

Related work

This chapter discusses the most prominent and recent research work related
to the learning of an SDE. It is broadly divided into two sections: the first
section discusses the related research work and the second section discusses
two closely related research papers in detail.

3.1 Literature review

Gaussian processes (GPs) (Rasmussen & Williams, 2006) provide an elegant
statistical machine learning framework that estimates uncertainty. However,
they are infamous for their high complexity, scaling as O(n3) in time and
O(n2) in space, making them impractical for numerous datasets consisting
of thousands of observations/data points. However, researchers have been
quite active in this area to mitigate this issue. One of the prominent works
is removing redundant information and exploiting the sparse structure by
introducing inducing features (Hensman et al., 2015b), reducing the com-
plexity to O(m3), m being the number of inducing features. As m << n, it
makes GPs more scalable, easy to train, and usable even for large datasets.

Generally, sparse GPs do not have a closed-form solution, and thus ap-
proximate inference is used (Titsias, 2009). Variational inference (VI) is one
of the most popular methods where the inference problem is cast as an opti-
mization problem. Other methods researched are Markov-chain-Monte-Carlo
methods, expectation propagation (Hensman et al., 2015a; Bui et al., 2017).

Adam et al. (2020) researched on combining the benefits of SSM and
sparse GPs using variational inference (VI) to tackle the problem of computa-
tional complexity, terming the model as a doubly sparse variational Gaussian
process (S2VGP).

Stochastic differential equations (SDEs) (Särkkä & Solin, 2019) provide

20
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a framework to model complex dynamic systems with applications in diverse
fields (Wang, 2005). An SDE consists of a deterministic term, drift, and a
stochastic term, diffusion. Inference of an SDE involves learning of both of
these functions. In many applications, the drift and diffusion are predefined
from which inferring the SDE has been researched (Friedrich et al., 2011).

Ruttor et al. (2013); Garćıa (2017) research on learning the non-
parametric drift and diffusion function using the Bayesian framework. These
models result in intractable state distributions and thus use gradient match-
ing algorithms. With the assumption of the drift function being linear, state
distribution becomes Gaussian which opens the area for variational algo-
rithms. Archambeau et al. (2007, 2008) research on a linear time-varying
SDE method which on performing variational approximation provides an
ELBO that is optimized using constrained optimization. As this work is
closely related to the thesis, they are discussed in detail in Section 3.2.

Duncker et al. (2019) propose an extension of Archambeau et al. (2007).
They propose to condition a GP on the drift function of the approximating
SDE, and a mean-field variational approximation is performed between the
drift and the state trajectory. In Ryder et al. (2018), the variational posterior
is parameterized as an SDE whose drift is a neural network, and a discretized
sampling scheme is used to evaluate the variational objective.

The advancement in automatic differentiation packages have encouraged
researchers to explore the possibility of black-box learning of continuous-
time dynamics. The most prominent work being neural ordinary differential
equations (e.g. Chen et al., 2018; Rubanova et al., 2019). Li et al. (2020)
introduced an efficient way to parameterize both the prior and posterior pro-
cesses as SDE in a variational setting. Their method extends on Chen et al.
(2018) and introduces a way to backpropagate through the SDE solution.
It is general but requires discretization of the time horizon and cannot use
adaptive SDE solvers.

Variational inference (VI) in models containing both the conjugate and
non-conjugate terms are computationally very expensive. ELBO can be op-
timized using the stochastic-gradient methods; however, they might result in
slow convergence as they do not use the conjugate properties. Khan (2014)
proposed an efficient method to optimize the lower bound in variational ap-
proximation models termed as conjugate-computation variational inference
(CVI).
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3.2 Gaussian process approximations of

stochastic differential equations

This section discusses the two research papers, Archambeau et al. (2007,
2008), in detail as they are closely related to the primary idea of the the-
sis. The paper presents an approach to perform Gaussian approximation
to the posterior over paths for an SDE with observations. Following this,
throughout the thesis, this method is referred to as GP-SDE.

Generative model

Suppose, there is a set of noisy observation Y = {yi}Ni=1 corresponding to
the hidden state X = {xi}Ni=1. An assumption about the prior (Itô) SDE is

dx(t) = f (x(t)) dt+
√
L dβ(t). (3.1)

In the presence of observations Y, the posterior over paths is written as

dppost(x(·)) =
1

Z
× dpprior(x(·))×

∏N

i=1 p(yi | x(ti)), (3.2)

where Z is the normalization constant and observations are over discrete
time, paths being continuous. It is further assumed that the likelihood model
is Gaussian, that is

p(yi | x(ti)) = N (yi | Hx(ti),R) . (3.3)

In many practical applications, discretization is favored, thus Eq. (3.1)
using Euler–Maruyama with h time-step is written as

xk+1 = xk + f(xk)h+
√
hN (0, L),

δxk = xk+1 − xk = f(xk)h+
√
hN (0, L), (3.4)

where discretization is done over [0, T ], {k}Thi=0 is the grid index, and for
brevity x(tk) is written as xk. Therefore, in discrete space, t and x takes
[t0, t1, . . . , tTh] and [x0, x1, . . . , xTh] values respectively.

Approximate inference

In presence of observations, calculating the posterior is intractable thus Ar-
chambeau et al. (2007) employ approximate inference to obtain the same. In
particular, VI, Section 2.2, is used to approximate the posterior over paths.
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From the prior SDE, it is known that the process is Markovian. With an
assumption of the drift function being linear, Archambeau et al. (2007) use
a Markovian GP to approximate the posterior,

dx(t) = fL(x(t), t) dt+
√
L dβ(t), (3.5)

where fL(x(t), t) = −A(t)x(t) + b(t). Same diffusion term as the prior
√
L

is used because of the KL divergence calculation which otherwise leads to
infinity.

KL divergence calculation

Next, to compare the two measures, the approximating posterior q and the
true posterior dppost Archambeau et al. (2007) use KL divergence, Section 2.2.

For simplification, first the KL between prior SDE and the approximating
posterior for discrete time is done. Employing Euler–Maruyama to the prior
SDE, Eq. (3.1), gives

xk+1 = xk + f(xk)h+
√
hN (0, L)

= N (xk + f (xk)h,Lh) ,

p(x0 :K) = p (x0)
∏K−1

i=1 N (xk + f (xk)h,Lh) . (3.6)

Similarly, for the approximating SDE, Eq. (3.5),

xk+1 = xk + fL(xk, tk)h+
√
hN (0, L)

= N (xk + fL(xk, tk)h, Lh),

q(x0:K) = q(x0)
∏K−1

k=1 N (xk + fL(xk, tk)h,Lh). (3.7)

Thus, the KL between them is evaluated as

DKL [q(x0 :K) ‖ p(x0 :K)] =
∫

q(x0 :K) log
q(x0 :K)
p(x0 :K)

dx0 :K

= DKL [q(x0) ‖ p(x0)] +
∫

q(x1 :K) log
q(x1 :K)
p(x1 :K)

dx1 :K . (3.8)

Using the Markov property, the second term of the KL is further evaluated
as

DKL [q(x1:K) ‖ p(x1:K)] =
∑K−1

i=1

∫

q(xi) dxi
∫

q(xi+1 | xi) log q(xi+1|xi)
p(xi+1|xi)

dxi+1

=
∑K−1

i=1

∫

q(xi) dxi
∫

dxi+1 q(xi+1 | xi) [log q(xi+1 | xi)− log p(xi+1 | xi)].
(3.9)
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Next, for simplicity the log terms are evaluated separately,

log q(xi+1 | xi)− log p(xi+1 | xi)

= −1

2
(xi+1 − xi − h fL(xi, ti))

⊤ (Lh)−1 (xi+1 − xi − h fL(xi, ti))

+
1

2
(xi+1 − xi − h f(xi))

⊤ (Lh)−1 (xi+1 − xi − h f(xi))

= −L−1

2

(

−∆x⊤
i fL(xi, ti)− fL(xi, ti)

⊤∆xi + fL(xi, ti)
⊤h fL(xi, ti)

+∆x⊤
i f(xi) + f(xi)

⊤∆xi − f(xi)
⊤h f(xi)

)

. (3.10)

Further, it is known that Eq(xi)[∆xi | xi] = fL(xi, ti)h. Therefore,

DKL [q(x1:K) ‖ p(x1:K)] =
1

2

∑K−1
i=1

∫

dxi q(xi)h
[

(f(xi)− fL(xi, ti))
⊤L−1(f(xi)

− fL(xi, ti))
]

, (3.11)

which leads to

DKL [q(x0:K) ‖ p(x0:K)] = DKL [q(x0) ‖ p(x0)]

+
1

2

∑K−1
i=1 h

〈

(f(xi)− fL(xi, ti))
⊤L−1(f(xi)− fL(xi, ti))

〉

q(xi)
, (3.12)

where 〈·〉q(xi)
means expectation under the posterior distribution q at xi.

As the terms have linear scaling with h of Riemann sums, the final KL is
written as

DKL [q(x) ‖ p(x)] = DKL [q(x0) ‖ p(x0)]

+
1

2

∫

i

〈

(f(xi)− fL(xi, ti))
⊤L−1(f(xi)− fL(xi, ti))

〉

q(xi)
dti. (3.13)

Similarly, KL between the approximating and true posterior is calculated
as

DKL [q(x) ‖ ppost(x)] =
∫

q(x) log q(x)
ppost(x)

dx

=
∫

dx q(x) log q(x)− q(x) log ppost(x)

=
∫

dx q(x) log q(x)− q(x)
[

− logZ + log psde(x)+
∑N

i=1 logN (yi | Hx(ti), R)
]

=
∫

dx q(x) log q(x)
psde(x)

+ q(x) logZ − q(x)
[
∑N

i=1 −D
2
log 2π

− 1

2
log |R| − 1

2
(yi −Hx(ti))

⊤R−1(yi −Hx(ti))
]
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= logZ +
N D

2
log 2π +

N

2
log |R|+

∫

dx q(x) log q(x)
psde(x)

+
1

2

∑N

i=1

∫

dx q(x)(yi −Hx(ti))
⊤R−1(yi −Hx(ti)). (3.14)

Thus, the final KL is

DKL [q(x) ‖ ppost(x)] = logZ +
ND

2
log 2π +

N

2
log |R|+DKL [q(x0) ‖ p(x0)]

+
∫

t
Esde(t) + Eobs(t) dt, (3.15)

where
Esde(t) =

1
2

〈

(f(xt)− fL(xt, t))
⊤L−1(f(xt)− fL(xt, t))

〉

q(xt)
,

Eobs(t) =
1
2

∑N

i=1

〈

(yi −Hx(ti))
⊤R−1(yi −Hx(ti))

〉

q(xt)
δ(t− ti) ,

and δ(·) is the dirac function.

Moments of the approximating posterior

The approximation posterior is given by the SDE,

dx(t) = fL(x(t), t) dt+
√
L dβ(t) ,

and, as the SDE is linear, which implies Gaussianity, the posterior is

q(x(t)) ∼ N (m(t), S(t)).

As discussed in Särkkä & Solin (2019, Chapter 6), a Gaussian distribution is
completely defined by its two moments which are given by

dm

dt
= E [fL (x(t), t)] = −A(t)m(t) + b(t),

dS

dt
= E[fL(x(t), t) (x(t)−m(t))⊤] + E[(x(t)−m(t)) fL

⊤(x(t), t)]

+ E[
√
LQ

√
L

⊤
]

= −A(t)S(t)− S(t)A⊤(t) + L. (3.16)

Therefore, the two moments are available by solving the system

dm

dt
= −A(t)m(t) + b(t),

dS

dt
= −A(t)S(t)− S(t)A⊤(t) + L. (3.17)
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Learning the approximate posterior

The aim is to learn the approximate posterior such that the KL divergence
between the approximating posterior and the true posterior Eq. (3.15) is
minimum. Also, the two moments of the posterior are given by Eq. (3.17).

Archambeau et al. (2007) perform constrained optimization (Bertsekas,
1996) where the main objective is to minimize the KL divergence constrained
on the two moments using Lagrange multipliers,

ℓ = DKL [q(x0) ‖ p(x0)] +
∫ T

t0
E(t)− tr

{

Ψ(t)
(

dS
dt

+A(t)S(t)

+S(t)A⊤(t)− L
)}

− λ(t)⊤
(

dm

dt
+A(t)m(t)− b(t)

)

dt, (3.18)

where E(t) = Eobs(t) + Esde(t).
Applying integration by parts leads to

ℓ = DKL [q(x0) ‖ p(x0)] +
∫ T

t0
E(t)− tr

{

Ψ(t)(A(t)S(t) + S(t)A⊤(t)− L)
}

− λ(t)⊤(A(t)m(t)− b(t))− tr

{

Ψ(t)
dS

dt

}

− λ(t)⊤
dm

dt
dt

= DKL [q(x0) ‖ p(x0)] +
∫ T

t0
E(t)− tr

{

Ψ(t)(A(t)S(t) + S(t)A⊤(t)− L)
}

− λ(t)⊤(A(t)m(t)− b(t)) + tr

{

S
dΨ(t)

dt

}

+m(t)
dλ⊤(t)

dt
dt

− tr{Ψ(T )S(T )}+ tr{Ψ(0)S(0)} − λ⊤(T )m(T ) + λ⊤(0)m(0). (3.19)

To optimize and update the values of the parameters A, b, m, S, Ar-
chambeau et al. (2007) suggest calculating the gradient of the objective,
Eq. (3.19), with respect to them and setting them to zero,

∂ℓ(t)

∂A(t)
=
∂E(t)

∂A(t)
− 2Ψ(t)S(t)− λ(t)m(t)⊤ = 0,

∂ℓ(t)

∂b(t)
=
∂E(t)

∂b(t)
+ λ(t) = 0,

∂ℓ(t)

∂S(t)
=
∂E(t)

∂S(t)
− 2Ψ(t)A(t) +

dΨ(t)

dt
= 0,

∂ℓ(t)

∂m(t)
=
∂E(t)

∂m(t)
−A(t)⊤ λ(t) +

dλ(t)

dt
= 0. (3.20)

Further, using the property E(t) = Esde(t) + Eobs(t),

∂E(t)

∂A(t)
=
∂Esde(t)

∂A(t)
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= L−1
[

〈

f(x(t))x(t)⊤
〉

q(xt)
+A(t)

〈

x(t)⊤x(t)
〉

q(xt)
− b(t)

〈

x(t)⊤
〉

q(xt)

]

,

(3.21)

∂E(t)

∂b(t)
=
∂Esde(t)

∂b(t)

= −L−1
[

〈f(x(t))〉q(xt)
+A(t) 〈x(t)〉q(xt)

− b(t)
]

. (3.22)

Further using the properties,
〈

xx⊤
〉

q(xt)
= mm⊤ + S and

〈

f(x) (x−m)⊤
〉

q(xt)
=

〈

∂f
∂x

〉

q(xt)
S, Archambeau et al. (2007) write the up-

date rules as

Ã(t) = −
〈

∂f

∂x

〉

q(xt)

+ 2LΨ(t),

b̃(t) = 〈f(x)〉q(xt)
+ Ã(t)m(t)− Lλ(t),

dΨ(t)

dt
= 2Ψ(t)A(t)− ∂E(t)

∂S(t)
,

dλ(t)

dt
= A(t)⊤λ(t)− ∂E(t)

∂m(t)
. (3.23)

To update the Lagrange multipliers, when an observation is present, a jump
condition is performed (derivative of Eobs tells amplitude)

Ψ(t+n ) = Ψ(t−n )−
1

2
H⊤R−1H, (3.24)

λ(t+n ) = λ(t−n ) +H⊤R−1(yn −Hm(tn)). (3.25)

However, due to numerical stability, Archambeau et al. (2007) suggest up-
dating the parameter values of A, b by taking small steps

A(t) = A(t)− ω(A(t)− Ã(t)), (3.26)

b(t) = b(t)− ω(b(t)− b̃(t)), (3.27)

where ω ∈ (0, 1).
Similarly, to learn and optimize the initial states, gradient of the objec-

tive, Eq. (3.19), with respect to m0, S0 is calculated and set to zero. The
prior distribution on the initial state p(x0) is chosen to be a Gaussian that
is p(x0) ∼ N (mp, Sp). Thus, the KL divergence between the posterior and
prior over initial states is written as

DKL [q(x0) ‖ p(x0)] =
1

2

[

log
|Sp|
|S0|

− k + (m0 −mp)
⊤ S−1

p (m0 −mp)
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+ tr
{

S−1
p S0

}]

. (3.28)

The derivative of Eq. (3.28) with respect to m0 and S0 is

∂DKL [q(x0) ‖ p(x0)]

∂m0

= S−1
p (m0 −mp) , (3.29)

∂DKL [q(x0) ‖ p(x0)]

∂S0

=
1

2

[

S−1
p − S−1

0

]

. (3.30)

Thus, using the above result, the gradients of the objective Eq. (3.19) leads
to

∂ℓ

∂m0

= S−1
p (m0 −mp) + λ(0) , (3.31)

∂ℓ

∂ S0

=
1

2

[

S−1
p − S−1

0

]

+Ψ(0) , (3.32)

and by setting them to zero the update rule is

m0 = mp − Sp λ(0), (3.33)

S0 =
[

S−1
p + 2Ψ(0)

]−1
. (3.34)

This method is also implemented and experimented with the two pro-
cesses: Ornstein–Uhlenbeck (OU) and double-well process in Chapter 5.



Chapter 4

Methods

This chapter introduces the proposed method, derives the variational infer-
ence objective that is evidence lower bound (ELBO) using Girsanov’s theo-
rem. An optimization algorithm based on natural gradients is also presented
to learn the model parameters. Following this, throughout the thesis, the
proposed method is referred to as SGP-SDE.

4.1 Sparse Markovian process

Suppose, a latent process is governed by a one-dimensional state SDE p that
is represented by its drift function (f = fθ) and diffusion term (L =

√
Σ) as

pθ(x) : dx(t) = fθ(x(t))dt+
√
Σdβ(t), (4.1)

and y is observed through an observation model. The proposed idea is to
approximate the posterior of this process pθ(X | Y) by a sparse Markovian
Gaussian process q. As discussed in Section 2.6, the posterior of q is written
as

q{ψ, ξ}(x(·), x(z)) = rψ(x(·) | x(z)) wξ(x(z)), (4.2)

where rψ(x(·) | x(z)) is a probability density of a Gaussian process (GP) and
wξ(x(z)) is a probability density over the inducing variables x(z). It should
be noted that x(·) are the values of x everywhere including the inducing
locations z thus the joint distribution is written as
q{ψ, ξ}(x(·)) = q{ψ, ξ}(x(·), x(z)).

As discussed in Särkkä & Solin (2019, Chapter 12), the Markovian GP
rψ is expressed as a linear time invariant SDE

rψ(x) : dx(t) = Fψ x dt+
√
Σdβ(t), (4.3)

29
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where the diffusion term is same as the specifying process p which otherwise
would lead to infinity in the following calculations.

For approximate inference, variational inference is used where objective
is to maximize the ELBO. As part of the ELBO computation, KL needs to
be calculated between the true and the approximated process

DKL [q(x(·)) ‖ p(x(·))] = Eq(x(·))

[

log
q(x(·))
p(x(·))

]

= Eq(x(·))

[

log
r(x(·) | x(z))w(x(z))

p(x(·))

]

= Eq(x(·))

[

log
r(x(·) | x(z)) r(x(z))

p(x(·)) + log
w(x(z))

r(x(z))

]

= −Eq(x(·))

[

log
p(x(·))
r(x(·))

]

+ Eq(x(z))

[

log
w(x(z))

r(x(z))

]

,

(4.4)

where the first term is continuous over paths (infinite dimensional term) and
the second term is discrete over the inducing variables z (finite dimensional
term). Both the terms are evaluated separately.

Infinite dimensional term

The infinite dimensional term, that is the continuous over paths term in
Eq. (4.4), is evaluated using Girsanov’s theorem (Girsanov, 1960).

Girsanov’s theorem: Särkkä & Sottinen (2008) further derived the
Girsanov theorem to provide a way to calculate the likelihood ratio of
two Itô processes. Consider, the two Itô processes are

p(x) : dx = f(x, t) dt+ dβ,

q(y) : dy = g(y, t) dt+ dβ,

with both the Brownian motions having Q spectral density.
The likelihood ratio between the two processes can be written as

p(X)

p(Y)
= exp

(

− 1

2

∫ τ

t=0
[f(y, t)− g(y, t)]⊤Q−1 [f(y, t)− g(y, t)] dt

+
∫ τ

t=0
[f(y, t)− g(y, t)]⊤Q−1 dβ(t)

)

. (4.5)
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Following Eq. (4.5), the infinite dimensional term is evaluated as

Eq(x(·))

[

log
p(x(·))
r(x(·))

]

= Eq(x(·))

[

− 1

2

∫ τ

t=0
[f(xt)− Fxt]

⊤ Σ−1 [f(xt)− Fxt] dt

+
∫ τ

t=0
[f(xt)− Fxt]

⊤Σdβ(t)

]

, (4.6)

where for brevity x(t) is written as xt. Further, the second term in the above
equation is zero as

Eq(x(·))

[∫ τ

t=0
[f(xt)− Fxt]

⊤Σdβ(t)
]

= Eq(x(·)) [φ(X) dβ(t)]

= 0 , (4.7)

where φ(X) is a transformation of X. Thus, the infinite dimensional term is
evaluated as

Eq(x(·))

[

log
r(x(·))
p(x(·))

]

= −1

2

∫ τ

t=0
Eq(xt)

[

(f(xt)− Fxt)
⊤Σ−1(f(xt)− Fxt)

]

dt,

(4.8)

where xt = x(t).

Finite dimensional term

From the model definition Eq. (4.2), it is known that q(x(z)) and w(x(z))
are equal. Therefore, the finite term, that is the discrete term over inducing
variables in Eq. (4.4), is evaluated as

Eq(x(z))

[

log
w(x(z))

r(x(z))

]

= Ew(x(z))

[

log
w(x(z))

r(x(z))

]

= DKL [w(x(z)) ‖ r(x(z))] . (4.9)

Therefore, the KL between p and the approximating process q using Eq. (4.8)
and Eq. (4.9) is

DKL [q(x) ‖ p(x)] =
1

2

∫ τ

t=0
Eq(xt)

[

(f(xt)− Fxt)
⊤ Σ−1 (f(xt)− Fxt)

]

dt

+DKL [w(x(z)) ‖ r(x(z))] . (4.10)

4.2 Evidence lower bound (ELBO)

As discussed in Section 2.2, the ELBO is a combination of the KL and the
variational log-likelihood. Therefore, for the proposed model, the ELBO is

ℓ = − 1

2

∫ τ

t=0
Eq(xt)

[

(f(xt)− Fxt)
⊤ Σ−1 (f(xt)− Fxt)

]

dt
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−DKL [w(x(z)) ‖ r(x(z))] + Eq(x(·))[log p(Y | X)]. (4.11)

With an assumption that the observations are independent and identically
distributed (IID), it is further written as

ℓ = − 1

2

∫ τ

t=0
Eq(xt)

[

(f(xt)− Fxt)
⊤ Σ−1 (f(xt)− Fxt)

]

dt

−DKL [w(x(z)) ‖ r(x(z))] +
∑

n Eq(xn)[log p(yn | xn)]. (4.12)

For brevity, in the following sections, the ELBO is written as

ℓ(θ, ψ, ξ) =
∫ τ

t=0
Eqφ(xt) [h1(xt)] dt+

∑

n Eqφ(xn) [h2(xn)]

−DKL [wξ(xz) ‖ rψ(xz)] , (4.13)

where h1(xt) = −1
2
(f(xt)− Fxt)

⊤ Σ−1 (f(xt)− Fxt) and
h2(xn) = log p(yn | xn).

The terms of the ELBO are interpreted as the drift matching term
being the first one, complexity being the second term, and third term
managing the model fit.

KL term

From model definition, it is known that q(xz) = w(xz). Using this property
along with Gaussian properties, KL term in Eq. (4.13) is evaluated as

DKL [w(xz) ‖ r(xz)] = DKL [q(xz) ‖ r(xz)]

= Eq(xz) [log q(xz)]− Eq(xz) [log r(xz)]

= −1

2
log |Σwz wz

|+ 1

2
tr(Σwz wz

K−1) + const, (4.14)

where w(xz) ∼ N (µwz
,Σwz wz

) and K is the kernel of the GP r.

4.3 Natural gradient descent

Stochastic gradient descent (SGD) can be used to optimize the ELBO in
Eq. (4.13) treating it as a black-box. However, as discussed by Manfred Op-
per (2009), it can be slow as the conjugate-computation benefits are not
being utilized as well as the number of free parameters are more in SGD.
Thus, natural gradients are used.

The objective is to maximize the ELBO in Eq. (4.13) with respect to
the distribution w(xz). As discussed earlier, the objective of maximizing the
ELBO can also be termed as the minimization of the negative ELBO.
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Let w(xz) be parameterized by λ. By using SGD, the parameter of the
distribution is optimized as

λt+1 = λt − ρt∇λL(λt). (4.15)

However, natural gradients can also be used which provides better updates
and is independent of the parameterization

λt+1 = λt − ρt F(λt)
−1∇λL(λt), (4.16)

where F(·) is the Fisher information matrix. In practice, as shown by Salim-
beni et al. (2018), calculation of Fisher information matrix is not required as
F(ηt)

−1∇ηL(ηt) = ∇µL(µt) where η is the natural parameter and µ is the
mean parameter.

Therefore, let, the natural parameters of w(x(z)) be ηw and the mean pa-
rameter be µw. In the following sections, the parameters without subscript
is used for w distribution. As discussed in Raskutti & Mukherjee (2015),
natural gradient descent can be cast as a mirror descent in mean parameter-
ization

µt+1 = argmin
µ

〈∇µL(µt),µ− µt〉+
1

ρt
DKL [µ ‖µt] . (4.17)

Further, using the property ∂µ DKL [µ ‖µt] = η − ηt

µt+1 = argmin
µ

〈∇µL(µt),µ− µt〉+
1

ρt
(η − ηt) . (4.18)

As the derivative is zero at an extremum, for the ELBO in Eq. (4.13)

∇µ [−ℓ(µt)] +
1

ρt
(η − ηt) = 0

∇µℓ(µt)−
1

ρt
(η − ηt) = 0

∇µg − ∂µ DKL [w(xz) ‖ r(xz)]−
1

ρt
(η − ηt) = 0

∇µg − η + ηr −
1

ρt
(η − ηt) = 0, (4.19)

where g =
∫ τ

t=0
Eqφ(xt) [h1(xt)] dt+

∑

n Eqφ(xn) [h2(xn)].
Following Khan & Lin (2017), using the model definition Eq. (4.2) and

the conjugate properties, it is known that η = ηr + λ̄. Therefore, Eq. (4.19)
is evaluated as

∇µg − λ̄− 1

ρt

(

ηr + λ̄− ηr − λ̄t
)

= 0
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ρt∇µg − λ̄ (ρt + 1) + λ̄t = 0. (4.20)

Thus, the natural gradient update is given by

λ̄(t+1) (ρt + 1) = ρt∇µ g + λ̄t

λ̄(t+1) = rt∇µ g + (1 + rt)λ̄t, (4.21)

where rt =
1

1+ρt
.

4.4 Natural gradient updates

For the natural gradient updates Eq. (4.21), the gradient of g term needs
to be calculated. For it, first the variational posterior and the chain rule is
derived.

Variational posterior

Following Adam et al. (2020, equation 13), using the state-space parameters,
the conditional of sparse Markovian GP is

r(xt | xz) ∼ N (Pt vt,Tt) , (4.22)

where vt = (ut−, ut+) are the inducing variable pairs. Considering
the probability density over the inducing variables to be Gaussian
w(xz) ∼ N (µwz

,Σwz wz
), the variational posterior q(xt) is written as

q(xt) = r(xt | xz) w(xz),
q(xt) ∼ N (Ptµwt

,Tt +PtΣwtwt
P⊤
t )

∼ N (µt,Σt), (4.23)

where x ∈ R
d, Pt ∈ R

d×2d, Tt ∈ R
d×d, vt ∈ R

2d, µwt
∈ R

2d, Σwtwt
∈ R

2d×2d,
µt ∈ R

d, and Σt ∈ R
d×d.

Chain rule

From Eq. (4.23), a chain rule to calculate the gradient with respect to µwt

and Σwtwt
is derived. For example, the gradient of f1(.) with respect to Σwtwt

is calculated as

∇Σwtwt
f1(.) = ∇Σt

f1(.) · ∇Σwtwt
Σt. (4.24)
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Therefore, following Eq. (4.23) and Eq. (4.24), the gradient of g with
respect to µwt

is

∂µwt
g =

∫

τ
P⊤
τ ∂µτ

g1(τ) dτ +
∑

nP
⊤
n ∂µn

g2(n), (4.25)

where g1(τ) = Eq(xτ ) [h1(xτ )] and g2(n) = Eq(xn) [h2(xn)]. Similarly, the gra-
dient with respect to Σwtwt

is

∂Σwtwt
g =

∫

τ
P⊤
τ ∂Στ

g1(τ)Pτ dτ +
∑

nP
⊤
n ∂Σn

g2(n)Pn. (4.26)

For an exponential distribution, it is known that the mean parameter is E[φ]
where φ = [x , x2]⊤ is the sufficient statistics. Therefore,

E[φ] = [µ(1) , µ(2)] =
[

µwt
, µwt

µ⊤
wt

+Σwtwt

]

,

µwt
= µ(1) ,

Σwtwt
= µ(2) − µ(1)µ(1)⊤. (4.27)

The gradients using the chain rule are calculated as

∂µ(2)g = ∂Σwtwt
g · ∂µ(2)Σwtwt

= ∂Σwtwt
g, (4.28)

∂µ(1)g = ∂Σwtwt
g · ∂µ(1)Σwtwt

= ∂Σwtwt
g · (∂µ(1) µ(2) − 2µ(1))

= ∂Σwtwt
g · ∂µ(1) µ(2) − ∂Σwtwt

g × 2µ(1)

= ∂µwt
g − ∂Σwtwt

g · 2µwt
. (4.29)

Therefore, by using Eq. (4.25) and Eq. (4.26) in Eq. (4.28) the gradient is
calculated as

∂µ(2)g =
∫

τ
P⊤
τ ∂Στ

g1(τ)Pτ dτ +
∑

nP
⊤
n ∂Σn

g2(n)Pn, (4.30)

∂µ(1)g =
∫

τ
P⊤
τ ∂µτ

g1(τ) dτ +
∑

nP
⊤
n ∂µn

g2(n)

− 2
(∫

τ
P⊤
τ ∂Στ

g1(τ)Pτ µwτ
dτ +

∑

nP
⊤
n ∂Σn

g2(n)Pnµwn

)

. (4.31)

For a Gaussian distribution it is known that the natural parameters of the
distribution are λ =

[

Σ−1 µ , −1
2
Σ−1

]

and ∂Σn
g1(n) =

1
2
∂2µn µn

g1(n). Thus,
the gradients are evaluated as

∂µ(2)g =
1

2

[∫

τ
P⊤
τ ∂

2
µτ µτ

g1(τ)Pτ dτ +
∑

nP
⊤
n ∂

2
µn µn

g2(n)Pn

]

, (4.32)

∂µ(1)g =
∫

τ
P⊤
τ ∂µτ

g1(τ) dτ +
∑

nP
⊤
n ∂µn

g2(n)
∫

τ
P⊤
τ ∂

2
µτ µτ

g1(τ)Pτ µwτ
dτ +

∑

nP
⊤
n ∂

2
µn µn

g2(n)Pnµwn
. (4.33)

However, above gradient calculation requires Gaussian approximation which
can be avoided for some distributions by using Price’s and Bonnet’s theorem.



CHAPTER 4. METHODS 36

Price’s and Bonnet’s theorem

Suppose, f is a scalar, non-linear function of {xi}ni=1 which are jointly dis-
tributed with µ mean and Σpg covariance between xp, xq. Price’s theorem
(Price, 1958) states

∇ρpq E[f ] = E

[

∇2
xpxq

f
]

, (4.34)

where p 6= q and the expectation is under a multi-variate Gaussian with all
variances equal to one and the correlation coefficients ρpq. Bonnet’s theorem
(Bonnet, 1964) states

∇µt
E[f ] = E [∇xt

f ] , (4.35)

where mt is the mean for xt.
Following the two theorems, the terms in Eq. (4.30) are evaluated as

∑

nP
⊤
n ∂Σn

g2(n)Pn =
∑

nP
⊤
n ∂Σn

Eq(xn) [h2(xn)]Pn

=
∑

nP
⊤
n Eq(xn) [∇2

xx h2(xn)]Pn , (4.36)
∑

nP
⊤
n ∂µn

g2(n) =
∑

nP
⊤
n ∂µn

Eq(xn) [h2(xn)]

=
∑

nP
⊤
n Eq(xn) [∇x h2(xn)] , (4.37)

∫

τ
P⊤
τ ∂Στ

g1(τ)Pτ dτ =
∫

τ
P⊤
τ ∂Στ

Eq(xτ ) [h1(xτ )]Pτ dτ

=
∫

τ
P⊤
τ Eq(xτ ) [∇2

xxh1(xτ )]Pτ dτ , (4.38)
∫

τ
P⊤
τ ∂µτ

g1(τ) dτ =
∫

τ
P⊤
τ ∂µτ

Eq(xτ ) [h1(xτ )] dτ

=
∫

τ
P⊤
τ Eq(xτ ) [∇xh1(xτ )] dτ . (4.39)

Thus, the gradient of g is evaluated as

∂µ(2)g =
∫

τ
P⊤
τ Eq(xτ ) [∇2

xxh1(xτ )]Pτ dτ

+
∑

nP
⊤
n Eq(xn) [∇2

xx h2(xn)]Pn, (4.40)

∂µ(1)g =
∫

τ
P⊤
τ Eq(xτ ) [∇xh1(xτ )] dτ +

∑

nP
⊤
n Eq(xn) [∇x h2(xn)]

− 2
(∫

τ
P⊤
τ Eq(xτ ) [∇2

xxh1(xτ )]Pτµwτ
dτ

+
∑

nP
⊤
n Eq(xn) [∇2

xx h2(xn)]Pnµwn

)

. (4.41)

4.5 Parameterization for w(x(z)) and

parameter count

One of the ways to learn the variational parameter ξ is to keep the other
parameters, ψ and θ, constant. Also, a plausible method to parameterize the
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distribution w is by defining the first two moments, µwz
and Σwzwz

. At the
optimum ELBO, as the aim is to maximize it,

ξ∗ = argmax
ξ

ℓ(θ, ψ, ξ),

∇ξℓ|ξ=ξ∗| = 0. (4.42)

The derivative of Eqφ(xt) [w(xt)] with respect to Σwtwt
, is calculated using

chain rule Eq. (4.24) as

∇Σwtwt
Eqφ(xt) [w(xt)] = ∇Σt

Eqφ(xt) [w(xt)] · ∇Σwtwt
Σt

= P⊤
t ∇Σt

Eqφ(xt) [w(xt)] Pt. (4.43)

Similarly, the derivative of KL in Eq. (4.14) with respect to Σwzwz
is

∇Σwzwz

DKL [w(xz) ‖ r(xz)] =
1

2

[

−Σ−1
wzwz

+K−1
]

. (4.44)

Therefore, derivative of the ELBO in Eq. (4.13) with respect to Σwzwz
is

∇Σwzwz

ℓ = ∇Σwzwz

∫

τ
Eqφ(xτ ) [h1(xτ )] dτ +∇Σwzwz

∑

n Eqφ(xn) [h2(xn)]

+
1

2

[

Σ−1
wzwz

−K−1
]

, (4.45)

which is further evaluated as

∇Σwzwz

ℓ =
∫

τ
P⊤
τ ∇Στ

Eqφ(xτ ) [h1(xτ )]Pτ dτ

+
∑

nP
⊤
n∇Σn

Eqφ(xn) [h2(xn)]Pn

+
1

2

[

Σ−1
wzwz

−K−1
]

. (4.46)

The optimal value of Σ∗
wzwz

is calculated by setting the derivative to zero

∇Σwzwz

ℓ = 0 ,

Σ∗−1
wzwz

= K−1 − 2
∫

τ
P⊤
τ ∇Στ

Eqφ(xτ ) [h1(xτ )]Pτ dτ

− 2
∑

nP
⊤
n∇Σn

Eqφ(xn) [h2(xn)]Pn

Σ∗−1
wzwz

= K−1 −
∫

τ
ατPτP

⊤
τ dτ −∑

n βnPnP
⊤
n , (4.47)

where ατ = 2∇Στ
Eqφ(xτ ) [h1(xτ )] and βn = 2∇Σn

Eqφ(xn) [h2(xn)].
Therefore, after discretising the integral term into t grid size, the total

number of parameters required are total α and β parameters that are t+ n

parameters.
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Experiments

This chapter presents the experiment with Ornstein–Uhlenbeck (OU) process
and a double-well process. For the OU process, the exact posterior is known
thus this experiment is for a sanity check. A double-well process is a good
candidate because of its non-linear nature. The primary aim of these exper-
iments is to learn the posterior of the underlying SDE based on observation
points over time. For both the processes, Gaussian process regression (GPR)
using GPFlow (Matthews et al., 2017), GP-SDE using Numpy (Harris et al.,
2020) and JAX (Bradbury et al., 2018), and the proposed method, SGP-SDE
using Newt (Wilkinson, 2021) are performed. In addition to them, for the
OU process, Doob’s h-transform is also performed.

5.1 Ornstein–Uhlenbeck (OU) process

Ornstein–Uhlenbeck (OU) process is a stochastic process of a particle going
through a Brownian motion (Uhlenbeck & Ornstein, 1930). It is a stationary
Markovian GP, discussed in Section 2.4, and can be expressed by an SDE

dx(t) = −λx(t) dt+ σ dβ(t), (5.1)

where drift function is f(xt) = −λxt, diffusion function is σ and Brownian
motion has Q spectral density.

OU process can also be thought of as a modification of a random walk
which is mean-reverting, over time it drops to its mean, which can be observed
in Figure 5.1.

Setup

An OU process trajectory using Euler–Maruyama is simulated, and 20 data
points are randomly selected for the experiment, shown in Figure 5.2. The

38
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Figure 5.1: OU process trajectories simulated using Euler–Maruyama show-
casing the mean-reverting nature of the process.

observation model is a Gaussian with a zero mean and 0.01 variance.
The parameters of the SDE used for simulating the trajectory are drift

coefficient λ = 0.5, diffusion coefficient σ = 1, and spectral density of the
Brownian motion Q = 0.1. The initial state x0 = 2 and Euler–Maruyama
is performed from time 0 to 10 with time-step 0.01. For all the methods
performed, the same experimental setup with the same observation points is
used.

0 2 4 6 8 10

0

1

2

Time (t)

x
(t
)

Observation points
Simulated OU trajectory

Figure 5.2: A OU process trajectory with randomly selected noisy observa-
tion points showcasing the experimental setup.

Gaussian process regression (GPR)

For the OU process, the kernel covariance function which provides the exact
solution of the posterior is known. As shown by Särkkä & Solin (2019,
Example 6.8), the stationary kernel covariance function corresponding to the
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OU process is

κ(t, t′) =
γ

2λ
exp (−λ |t− t′|) , (5.2)

where γ = σ2 Q.
On conditioning a GP with OU kernel on the observed points, the exact
posterior is calculated in closed form, shown in Figure 5.3.
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)
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Simulated OU trajectory
GPR

Figure 5.3: Mean and 95% confidence region of the posterior obtained for
the OU process with noisy observation points by conditioning a GPR with
OU kernel.

Doob’s h-transform

Doob’s h-transform is a method used to get an SDE by conditioning another
SDE on its end point (Särkkä & Solin, 2019, Chapter 7). The primary idea
of Doob’s h-transform is that the result of multiplying the transition density
of the original SDE with a term is an SDE which gives the transformed
transition density.

As shown by the authors, the conditioned OU process can be written as

dx =

[

−λx+
α a(t)

σ2(t)
(xT − a(t)x)

]

dt+ dβ, (5.3)

where

a(t) = exp (−λ (T − t)) ,

σ2(t) =
α

2λ
[1− exp (−2λ (T − t))] ,

α = q σ2.

Figure 5.4 showcases the first two moments of the Gaussian states of
the conditioned OU SDE. From the figure, it can also be inferred that the
conditioned GP is identical to the posterior of the GPR with OU kernel which
is expected as both of them give the exact posterior.
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Figure 5.4: Mean and 95% confidence interval of the posterior obtained for
the OU process with noise-less observation points obtained by GPR with OU
kernel and Doob’s h-transform (conditioned SDE). Both the posteriors are
identical, expressing that both methods are fundamentally the same.

GP-SDE

As discussed in Section 3.2, the SDE can be approximated path-wise via
Gaussian process approximation as

dx(t) = f(x(t)) dt+ σ dβ(t)

≈ fL(x(t)) dt+ σ dβ(t),
(5.4)

where fL(x(t)) = −A(t)x(t) + b(t).
Following the discussion, variational approximation is used with the

ELBO as the objective along with the conditions incorporated by perform-
ing constrained optimization. For the OU process, the Esde in Eq. (3.15) is
simplified to

Esde(t) =
1

2σ2

[

(At −α)2
〈

x2
t

〉

q(xt)
− 2bt (At −α) 〈xt〉q(xt)

+ b2
t

]

, (5.5)

where α is the drift coefficient. Also, the update rules Eq. (3.23) can be
written as

Āt = α+ 2σ2Ψt, (5.6)

b̄t = (Āt −α)mt − σ2λt, (5.7)

where λt and Ψt are the Lagrange multipliers.
Figure 5.5 showcases the approximated posterior of the OU process along

with the evolution of parameters of fL(·) and the Lagrange multipliers over
time. These parameters jump when a value is observed due to the jump
conditions.
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Figure 5.5: Mean and 95% confidence interval of the posterior obtained by
GP-SDE for the OU process with noisy observation points and the Lagrange
multiplier values, λ(t) and Ψ(t), and the variational parameters A(t) and
b(t).

SGP-SDE

The proposed method, SGP-SDE, is employed in the same experimental
setup to approximate the posterior. Thus,

pθ(x(·)) : dx(t) = −λ(x(·)) dt+ σ dβ(t), (5.8)

qφ(x(·)) : r(x(·) | x(z)) w(x(z)), (5.9)

where for r, Matérn 1/2 kernel is chosen. The inducing variables are taken
to be the same as the observation points and are not optimized.
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For OU process, Girsanov’s term in the ELBO Eq. (4.13) is simplified to

ℓGirsanov = − 1

2σ2

∫

τ
(λ+ F )2(m2

τ + Sτ ) dτ, (5.10)

where the integral can be calculated as Riemann sums. Similarly, the natural
gradient updates Eq. (4.32) for the Girsanov’s term can be calculated in
closed form as

g1(τ) = − 1

2σ2
(λ+ F )2(µ2

τ +Στ ), (5.11)

∂µτ
g1(τ) = − 1

σ2
(λ+ F )2µτ , (5.12)

∂2µτ µτ
g1(τ) = − 1

σ2
(λ+ F )2. (5.13)

The posterior obtained by SGP-SDE is showcased in Figure 5.6 and the
ELBO values along with its terms are plotted in Figure 5.7.
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Figure 5.6: Mean and 95% confidence interval of the posterior obtained by
SGP-SDE for the OU process with noisy observation points.

5.2 Double-well experiment

Double-well system is a non-linear system which makes it an ideal candidate
for the experiment. The drift of the double-well SDE arises from the potential

u(x) = −2x2 + x4, (5.14)

which leads to the following drift function

f(x) = −du(x)

dx
= 4x− 4x3. (5.15)
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Figure 5.7: The evolution of the SGP-SDE method’s ELBO terms and the
drift function of the sparse Markovian GP r over iterations for the OU process
with noisy observation points.

The double-well process has two minima +1 and −1 which is evident from the
drift function f(x) as well as from the sample Euler–Maruyama trajectory
Figure 5.8. The state x(t) fluctuates between the two minima due to the
driving noise which makes the process non-Gaussian.

Setup

A double-well process is simulated using Euler–Maruyama, and uniformly
distributed data points at an interval of 0.5 are selected for the experiment,
shown in Figure 5.9. The observation model is a Gaussian with a zero mean
and 0.05 variance.

The parameters of the SDE used for simulating the trajectory are
Eq. (5.15) as drift function, diffusion coefficient L = 1.22, and spectral den-
sity of the Brownian motion Q = 0.5. The initial state x0 = 1 and Euler–
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Figure 5.8: A double-well process trajectory simulated using Euler–
Maruyama showcasing the two minima at +1 and −1 and the state fluc-
tuations between them.

Maruyama is performed from time 0 to 10 with time-step 0.01. For all the
methods performed, the same experimental setup with the same observation
points is used.
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Figure 5.9: A double-well process trajectory with uniformly distributed noisy
observation points showcasing the experimental setup.

Gaussian process regression (GPR)

A GP with squared-exponential kernel (RBF) is conditioned on the observed
data points in order to obtain the posterior, showcased in Figure 5.10.

The observation model is fixed for the experiment and Adam optimizer
(Kingma & Ba, 2015) with an initial learning rate of 0.01 is used to optimize
the parameters with the aim to minimize the negative log-likelihood.
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Figure 5.10: Mean and 95% confidence region of the posterior obtained for
the double-well process with noisy observation points by conditioning a GPR
with an RBF kernel.

GP-SDE

As discussed in Section 3.2 and similar to the OU experiment, the SDE can
be approximated path-wise via Gaussian process approximation as

dx(t) = f(x(t)) dt+ σ dβ(t)

≈ fL(x(t)) dt+ σ dβ(t),
(5.16)

where fL(x(t)) = −A(t)x(t) + b(t). However, in this case, the drift of the
prior SDE is non-linear so fL(x(t)) tries to approximate and learn the lin-
earized drift function.

Following the discussion, variational approximation is used with the
ELBO as the objective along with the conditions incorporated by performing
constrained optimization. For the double-well process, the Esde in Eq. (3.15)
is written in closed form as

Esde(t) =
1

2σ2

〈

16x6
t − 8(4 +At)x

4
t + 8bt x

3
t + (4 +At)

2 x2
t

+b2
t − 2(4 +At)bt xt

〉

q(xt)
. (5.17)

Also, the update rules Eq. (3.23) is written as

Āt = −4(1− 3m2
t − 3St) + 2Ψt σ

2, (5.18)

b̄t = −4
〈

x3
t

〉

q(xt)
+ (4 +At)mt − σ2λt, (5.19)

where λt and Ψt are the lagrange multipliers and q(xt) ∼ N (mt, St).
Figure 5.11 showcases the approximated posterior of the double-well pro-

cess along with the evolution of parameters of fL(·) and the lagrange mul-
tipliers over time. These parameters jump when a value is observed due to
the jump conditions.
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Figure 5.11: Mean and 95% confidence interval of the posterior obtained by
GP-SDE for the double-well process with noisy observation points and the
Lagrange multiplier values, λ(t) and Ψ(t), and the variational parameters
A(t) and b(t).

SGP-SDE

The proposed method, SGP-SDE, is employed in the same experimental
setup to approximate the posterior. Thus, similar to the OU process ex-
periment,

pθ(x(·)) : dx(t) = f(x(·)) dt+ σ dβ(t), (5.20)

qφ(x(·)) : r(x(·) | x(z)) w(x(z)), (5.21)

where f(x) = 4x(1− x2) and for r, Matérn 1/2 kernel is chosen. The induc-
ing variables are taken to be the same as the observation points and are not
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optimized.
For the double-well process, the expectation in the Girsanov’s term in the

ELBO Eq. (4.13) is approximated using Gaussian quadrature method and
integral is calculated via Riemann sums.

The posterior obtained by SGP-SDE for double-well is showcased in Fig-
ure 5.12 and ELBO values along with its terms are plotted in Figure 5.13.
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Figure 5.12: Mean and 95% confidence interval of the posterior obtained by
SGP-SDE for the double-well process with noisy observation points
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Figure 5.13: The evolution of the SGP-SDE method’s ELBO terms and the
drift function of the sparse Markovian GP r over iterations for the double-well
process with noisy observation points.



Chapter 6

Discussion

The chapter discusses the two experiments, the Ornstein–Uhlenbeck (OU)
process and the double-well process, and analysis the approximated poste-
rior showcasing the inference capability of the proposed method. Both the
experiments are discussed separately, followed by a discussion on the exten-
sion of the proposed method.

6.1 Ornstein–Uhlenbeck (OU) process

For the OU process, the exact posterior is obtained by Gaussian process re-
gression (GPR) using the OU kernel and Doob’s h-transform. Along with
SGP-SDE, the GP-SDE method is also performed to approximate the pos-
terior.

As discussed, SDE for the OU process is

dx(t) = −λx(t) dt+ σ dβ(t) , (6.1)

and for the experiment, the value of λ = 0.5, σ = 1, and Q = 0.1. A linear
SDE defines the process and, as the posterior can be evaluated in closed
form, the experiment is primarily performed for a sanity check.

As shown in Figure 6.1, the posterior obtained by GP-SDE matches the
exact posterior obtained by GPR. However, a deviation is noticed for the
posterior obtained by SGP-SDE.

The Girsanov’s term is expected to converge at zero but it does not as
shown in Figure 5.7. Consequently, the lengthscale does not converge to the
true lengthscale value, obtained on comparison of the OU kernel and the
Matérn 1/2 kernel.

50
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Figure 6.1: Mean and 95% confidence interval of the posterior obtained by
GPR with OU kernel, GP-SDE, and SGP-SDE for the OU process with noisy
observation points.

6.2 Double-well process

The SDE for the double-well process is

dx(t) = f(x(t)) dt+ σ dβ(t), (6.2)

where f(x(t)) = 4x(t)(1− x(t)2). To approximate the posterior, Gaussian
process regression (GPR), GP-SDE, and SGP-SDE are performed.

The posterior obtained by GPR with an RBF kernel, shown in Fig-
ure 5.10, is not ideal as it does not identify the two wells. It is mainly
because the GPR does not use the knowledge of the dynamics. Also, it
requires high variance to explain the data of the two wells.

Figure 5.12 showcases the posterior approximated by the proposed
method, SGP-SDE. As stationary Markovian GP is used, it fails to express
the double-well process data which fluctuates between the two wells leading
to a non-zero centered dynamics.

6.3 Limitation and extension

One of the benefits of the proposed method is that the sparse posterior is
cheap in computation and easy to evaluate. However, a stationary GP, that
is with a drift f(x(t), t) = Fx(t), is not able to approximate SDEs like
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Figure 6.2: Mean and 95% confidence interval of the posterior obtained by
GP-SDE and SGP-SDE for the double-well process with noisy observation
points.

double-well globally. To overcome this, following extensions to the current
method are proposed.

The current implementation of the proposed method involves the LTI
SDE representation of the sparse markovian GP

dx(t) = Fx(t) dt+ σ dβ(t). (6.3)

However, by representing the Markovian GP as

dx(t) = F (x(t)− u) dt+ σ dβ(t) , (6.4)

it is made more expressive as it allows to capture the dynamics of a non-zero
mean-reverting process. This representation would benefit the double-well
experiment as it has three specific gradient regions which can be incorporated
using this representation. A piece-wise stationary kernel is also a plausible
way to incorporate the information of a region-varying dynamics.



Chapter 7

Conclusion

The thesis proposes a novel method, SGP-SDE, to learn the stochastic dif-
ferential equation (SDE) describing a dynamical system based on a set of
discrete observations. The stochasticity in the dynamical system, discrete
observations for continuous paths, complex underlying SDE and a complex
observation model, make the task challenging.

Bayesian methods have been a popular choice for such tasks with an ob-
jective to maximize the marginal log-likelihood of the observations. However,
it is intractable for most of the systems, and thus approximate algorithms
are employed. Gaussian processes (GPs) are often used as approximate pos-
terior over SDE paths. The resulting algorithms require fine discretization
of the time horizon leading to a significant number of parameters and high
complexity in both space and time.

By exploring the recent advances in approximate inference related to
sparse GPs, the thesis presents an alternative parameterization to the ap-
proximate distribution over SDE paths based on a sparse Markovian Gaus-
sian process. Similar to the current methods, the lower bound to the log-
marginal likelihood, evidence lower bound (ELBO), is optimized. However,
in contrast to the current methods, the proposed parameterization results
in easy to evaluate, parallelizable ELBO. The resulting algorithm requires
fewer number of parameters and reduces complexity, allowing well-defined
optimization algorithms such as natural gradient descent for better conver-
gence.

The method is evaluated on two processes: the Ornstein–Uhlenbeck (OU)
process and the double-well process. Both processes are quite different from
each other as the OU process is represented by a linear SDE whose true
posterior is available in closed form. In contrast, a non-linear SDE represents
the double-well process. Both the experiments demonstrate the capability of
the proposed method to approximate the states posterior with a significantly
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less number of parameters than the current methods.
The work presented in the thesis is preliminary. Future work involves

making the sparse Markovian Gaussian posterior distribution more expressive
and adopting a quantitative metric to evaluate the posterior between different
methods. Furthermore, an experiment on a complex, real-world SDE with a
multidimensional state vector is required to showcase the true capability of
the method.
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Errata

July 2022

1. Equations formatted using bold variables for better reading.

2. Integration variables in equations explicitly written for clarity.
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